
 Antonios Atlasis, aatlasis@secfu.net

ChironChiron

An All-In-One IPv6 Pen-Testing An All-In-One IPv6 Pen-Testing
FrameworkFramework

 Antonios Atlasis, aatlasis@secfu.net

A Brief BioA Brief Bio

● An IT engineer for more than 20 years, developer and instructor in several
Computer Science and Computer Security related fields.

● Penetration tester, incident handler and intrusion analyst and cyber-researcher
for the last 7 years.

● MPhil (University of Cambridge), PhD (National Technical University of Athens).
● More than 25 scientific papers published in several international Journals and

Conferences.
● Several GIAC certifications (GCIH, GWAPT, GREM, GPEN, GCIA and GXPN),

and a Giac Gold Adviser (having supervised more than 20 Giac Gold papers).
● Latest security researching interests: IPv6, IDS/IPS and WAF evasions, SCADA

systems. Some of the work has been presented at BlackHat Europe 2012,
BlackHat Abu Dhabi 2012 and Troopers 13 security conferences.

● Currently working as an independent IT security analyst/consultant. Can reach
me at aatlasis@secfu.net

 Antonios Atlasis, aatlasis@secfu.net

Outline of the PresentationOutline of the Presentation

● Introduction to the framework
● Generic parameters (available to most or even all modules)
● Network Scanning

– Link-Local

– Global (LAN/WAN)

● Sending Arbitrary IPv6 Neighbor Discovery Messages
● An IPv4-to-IPv6 Proxy
● Advanced IPv6 Scanning Techniques

– Performing simple fragmentation

– Flooding

– Fuzzing (manually) IPv6 Extension Headers

– IDS Evasion Techniques

 Antonios Atlasis, aatlasis@secfu.net

HintsHints

● During the presentation, three tokens will be
displayed: Write them down.

● During the workshops, you will be given several
tasks.

● At the end, a challenge will also be given.

 Antonios Atlasis, aatlasis@secfu.net

Why and How This Tool Was Why and How This Tool Was
BuildBuild

● There are already great IPv6 Security tools.
● I always needed to do tests that were not covered by existing

tools.
● I started building my own scripts using Scapy. Effective but

not efficient because I had to write/change code for every
single case that I wanted to change/test.

● So, I tried to build a tool that will you give all the flexibility you
need to craft arbitrary IPv6 packets to run your own tests, not
covered by other tools yet, but without having to write a single
line of code.

● This is how Chiron was born. And I decided to share it with
you.

 Antonios Atlasis, aatlasis@secfu.net

This is the 1This is the 1stst Public Release of Public Release of
The ToolThe Tool

● So, please, be patient, since we may encounter
a few problems (aka, bugs).

● Keep notes of bugs, suggestions, features that
you want me to add, etc.

● I am always open to comments and discussion.

 Antonios Atlasis, aatlasis@secfu.net

Brief IntroductionBrief Introduction

● Chiron is written in Python; it uses Scapy, a very powerful Python library.
● It incorporates its own IPv6 sniffer(s).
● It is a mutli-threaded tool.
● It does not use the OS stack but Scapy libraries.
● A Framework not suitable for script-kiddies (you have to know IPv6 – RFCs

are the manual...).
● Main advantage: You can easily craft arbitrary IPv6 header chain by using

various types of IPv6 Extension Headers. This option can be used:
– To evade IDS/IPS devices, firewalls, or other security devices.

– To fuzz IPv6-capable devices regarding the handling of IPv6 Extension Headers.

● Main disadvantage: Many times you cannot stop it easily. You have to “kil”l
it. This is because how python handles threads.

 Antonios Atlasis, aatlasis@secfu.net

Main Modules (up to know)Main Modules (up to know)

● IPv6 Scanner
● IPv6 Neighbor Discovery Messages Tool
● IPv4-to-IPv6 Proxy
● IPv6 Auto-Attacking Tool (implementation in the

near future)

All the above modules are supported by a
common library that allows the creation of
completely arbitrary IPv6 header chains,
fragmented or not.

 Antonios Atlasis, aatlasis@secfu.net

Main CharacteristicsMain Characteristics

● Flexibility
● Modularity
● Fast performance (due to multi-threading),

especially when a delay is introduced due to
networking operations.

● Expandability
● But (deliberately) a tool not suitable for Script-

Kiddies (you have to know IPv6 and how to use
it).

 Antonios Atlasis, aatlasis@secfu.net

PreparationPreparation

● To run the IPv6 Scanner, you need a slightly patched version of Scapy, and of
course, Python (version 2.7.x).

● Patched version of Scapy provides:
– An IPv6 Fake Extension Header
– A Bug Fix regarding the handling of ICMPv6 Fragment Reassembly Time Exceeded

● Download Chiron and Scapy from the Web Server
● If you use Windows, download VirtualBox and import Linux virtual appliance.
● Optionally, install the following python libraries:

– python-crypto
– PyX
– gnuplot-py

● Then, build and install scapy:
– $ python setup.py build
– # python setup.py install

 Antonios Atlasis, aatlasis@secfu.net

Task 0: Prepare Your MachineTask 0: Prepare Your Machine

● Prepare your attacking environment.
– If you use Linux, simply download Chiron and Scapy from the lab

web-server, or copy them
● I assume that you already have Python installed.
● A sniffer tcpdump/Wireshark would also be useful.

– If you use Windows or MAC OS X:
● Download and install VirtualBox
● Import a provided Linux machine (which includes everything that you need).
● Put the interface on Bridged mode. Ask me to help you if you do not know

how!

– USB flash drives are available with everything that you need.

● Web server address:

http://[2001:db8:c001:babe:224:54ff:feba:a197]/

 Antonios Atlasis, aatlasis@secfu.net

The ToolsThe Tools

● All the tools are located into the ./bin directory:
– chiron_scanner.py A network scanner

– chiron_combinations.py For generating IPv6
suffixes by combining several words – useful for “smart”
scanning

– chiron_nd.py For generating arbitrary
Neighbor Discovery Messages

– chiron_proxy.py A multi-threaded IPv4-to-IPv6
proxy.

● The libraries are located into the ./lib directory (but
you don't need to access them directly).

 Antonios Atlasis, aatlasis@secfu.net

How to Use itHow to Use it

● You must run the binaries as root.
● You must define at least the interface to use (e.g.

./chiron_scanner.py eth0, etc., depending on your OS).
● To use some of the advanced features, you must also patch

Scapy (patching files are provided).
● IMPORTANT NOTE: While running (at least the advanced

techniques of) the IPv6 Scanner, please make sure not to run
any other IPv6 activities (e.g. web browsing using IPv6);
otherwise, the incorporated sniffer may catch the traffic and
jeopardise the results.

● As always: HACK NAKED :-)
● If, at any time, you need help, please use the ­­help switch.

 Antonios Atlasis, aatlasis@secfu.net

Generic ParametersGeneric Parameters

Common to all the available modules of the
framework

 Antonios Atlasis, aatlasis@secfu.net

First, Define the Network Interface First, Define the Network Interface
to Useto Use

● Example:

 ./chiron_scanner.py eth0 ...etc.

(depending on your OS)

 Antonios Atlasis, aatlasis@secfu.net

Defining The TargetsDefining The Targets

 Antonios Atlasis, aatlasis@secfu.net

Defining Your TargetsDefining Your Targets

● Available the following options:
– A comma separated list of IPv6 addresses or FQDN

(CLI)

– A range of IPv6 addresses

– IPv6 subnets (but be careful, if you want to finish in
this ...life)

– A list of IPv6 addresses or FQDN in a text file (one
per line).

– Automatic combinations of suffixes of your choice
with a chosen IPv6 prefix.

 Antonios Atlasis, aatlasis@secfu.net

Define Your Destinations Define Your Destinations

● Using the -d switch.
– Comma-separated list (IPv6 addresses, FQDN or a

combination of them),

– Define a subnet, from /64 to /127

Example: -d fdf3:f0c0:2567:7fe4/120

– Define ranges of IPv6 addresses

Example: -d fdf3:f0c0:2567:7fe4:800:27ff-35ff:fe00:0-ffff

● NOTE: You cannot combined the
aforementioned cases (yet).

 Antonios Atlasis, aatlasis@secfu.net

Define Your Destinations Define Your Destinations

● Read the targets from an input file using the -iL
switch (one per line).

● Perform a smart scan using the -sM switch
(more info in the Tutorial).

● If you need to reach another network via a
gateway, you HAVE TO define the gateway by
using the -gw switch, like:

-gw <address_of_a_gateway>

 Antonios Atlasis, aatlasis@secfu.net

““Smart” ScanSmart” Scan

● It has been shown that some network
administrators use suffixes like:
– beef, babe, b00c, face, dead, etc

– or a combination of them, like face:b00c, dead:beef,
etc.

● You can use such combinations with /64
prefixes.

● You can create a list of such possible
combinations using the following steps.

 Antonios Atlasis, aatlasis@secfu.net

““Smart” ScanSmart” Scan

1. Create a list of potential suffixes in a text file,
one per line, e.g.:

face

b00c

beef

...etc.

– Sample files are given in the files directory (named
combinations.txt and combinations-small.txt).

 Antonios Atlasis, aatlasis@secfu.net

““Smart” ScanSmart” Scan

2. Use the ./chiron_combinations.py binary to create the possible
combinations. Example:

./chiron_combinations.py ../files/combinations-small.txt output.txt

Sample of the output file:

:face:b00c:f00d:abba

:face:b00c:f00d:b00b

:face:b00c:f00d:b0b0

:face:b00c:f00d:babe

:face:b00c:f00d:bead

:face:b00c:f00d:beef

...etc.

You have to create such a file just once (unless you want to add more suffixes).

 Antonios Atlasis, aatlasis@secfu.net

““Smart” ScanSmart” Scan

3. Once you have created, you just need to use it
using the -sM switch, but, moreover:

-pr <ipv6 prefix> the network IPv6 prefix (routing
prefix plus subnet id) to use. Currently, only /64
prefixes are supported.

-iC <input filename> the filename where the
combinations to use are stored.

Example:

./chiron_scanner.py vboxnet0 -sM -pr fdf3:f0c0:2567:7fe4
-iC ../files/my_combinations-small.txt -sn

 Antonios Atlasis, aatlasis@secfu.net

Defining (or Spoofing) The Defining (or Spoofing) The
Source AddressesSource Addresses

 Antonios Atlasis, aatlasis@secfu.net

Defining (spoofing) source Defining (spoofing) source
addressesaddresses

● The source address of your packets is chosen is following:
– If an IPv6 source and a MAC source addresses are not defined,

your machine's IPv6 address and the corresponding MAC
address are used of the interface you have chosen.

– If you randomise or define (spoof) a source MAC address, your
IPv6 address and the spoofed MAC address are used.

– If you define (spoof) just a source IPv6 address, the
corresponding MAC address is used as a source (it is found
using Neighbor Solicitation - NS). If NS does not return a MAC
address, a random MAC address is used.

– If you spoof or randomise both the IPv6 address and the MAC
address, these specific spoofed MAC addresses are used.

 Antonios Atlasis, aatlasis@secfu.net

Defining (spoofing) source Defining (spoofing) source
addressesaddresses

● Switches to use:
– -s <IPv6 source address> The IPv6 address you

want to specify as a source address.

– -m <MAC source address> The IPv6 address you
want to specify as a source address.

– -rs -pr <IPv6_network_preffix> Randomise the IPv6
source address, using as an IPv6 network prefix the
one defined using the -pr switch.

– -rm Randomise the source MAC address. You do
not have to define anything else.

 Antonios Atlasis, aatlasis@secfu.net

(Some) Other Generic Parameters(Some) Other Generic Parameters

● -hoplimit <Hop Limit> Values: 0 to 255. Default
values: 64 for the scanner, 255 for the neighbor
discovery (nd) tool.

● -threads <NO_OF_THREADS > The number of
threads to use (for multi-threaded operation).
Default value: 10

● Store the results to a file:

-of <OUTPUT_FILE> The filename where the
results will be stored (otherwise displayed at the
stdout).

 Antonios Atlasis, aatlasis@secfu.net

Other Various (Generic) Other Various (Generic)
Parameters Parameters

● During the various scanning/attack methods, the following
switches can also be used that either provides more info, or
specialise some scamming details:

-nsol Display neighbor solicitation results (IPv6 vs MAC
addresses) for your info. Default: False.

-timeout <SEND_TIMEOUT> The timeout (in seconds) if
resending of packets is required (for instance when a response
has not been received). Default value: 2

-no_of_retries <NUMBER_OF_RETRIES> The number of retries
when a response is not received. Default value: 2

-stimeout <SNIFFER_TIMEOUT> The timeout (in seconds)
when the integrated sniffer (IF used) will exit automatically.
Default value: 60 seconds

 Antonios Atlasis, aatlasis@secfu.net

1. The IPv6 Scanner Module1. The IPv6 Scanner Module

 Antonios Atlasis, aatlasis@secfu.net

Link-Local ScanningLink-Local Scanning

 Antonios Atlasis, aatlasis@secfu.net

Simple IPv6 ScanningSimple IPv6 Scanning

● -rec Sniffs the wire passively (default: 10
seconds). Change the sniffing time using the
-stimeout switch.

 Antonios Atlasis, aatlasis@secfu.net

Passive Scanning – Example Passive Scanning – Example
OutputOutput

 Antonios Atlasis, aatlasis@secfu.net

Passive Scanning – Yet Another Passive Scanning – Yet Another
Example OutputExample Output

Token 1: 8096-3485-6232-3080-8540

 Antonios Atlasis, aatlasis@secfu.net

Simple IPv6 ScanningSimple IPv6 Scanning

● -rec Sniffs the wire passively (default: 10 second). Change
the sniffing time using the -stimeout switch.

● -mpn Multicast ICMPv6 Scan
– Messages are sent to IPv6 address "ff02::1" and MAC address

"33:33:00:00:00:01".

– The following messages are sent:
● A legitimate ICMPv6 Echo Request
● An Unsolicited Neighbor Advertisement
● An ICMPv6 Echo Request preceded by an IPv6 Destination Options Header

with an unknown Option (to trigger an “ICMPv6 Parameter Problem -
unrecognized IPv6 Option encountered”).

● An ICMPv6 Echo Request preceded by an non-existing (Fake) IPv6
Extension Header (to trigger an “ICMPv6 Parameter Problem - unrecognized
Next Header type encountered”)

 Antonios Atlasis, aatlasis@secfu.net

Multicast Ping Scan – Example Multicast Ping Scan – Example
OutputOutput

 Antonios Atlasis, aatlasis@secfu.net

Simple IPv6 ScanningSimple IPv6 Scanning

● -rec Sniffs the wire passively (default: 10 second). Change the
sniffing time using the -stimeout switch.

● -mpn Multicast ICMPv6 Scan
– Messages are sent to IPv6 address "ff02::1" and MAC address

"33:33:00:00:00:01".

– The following messages are sent:
● A legitimate ICMPv6 Echo Request
● An Unsolicited Neighbor Advertisement
● An ICMPv6 Echo Request preceded by an IPv6 Destination Options Header with an

unknown Option (to trigger an ICMPv6 Parameter Problem - unrecognized IPv6
Option encountered).

● An ICMPv6 Echo Request preceded by an non-existing (Fake) IPv6 Extension
Header (to trigger a to trigger an ICMPv6 Parameter Problem - unrecognized Next
Header type encountered)

● -sn Ping Sweep

 Antonios Atlasis, aatlasis@secfu.net

IPv6 TraceroutingIPv6 Tracerouting

● -tr-gr tracerouting graph
● -tr generic tracerouting

 Antonios Atlasis, aatlasis@secfu.net

Simple IPv6 TCP TraceroutingSimple IPv6 TCP Tracerouting

● Use -tr-gr

● You have to define your destinations only in a comma
separated list using the -d switch.

● It sends all the packets at the same time, in parallel.

 Antonios Atlasis, aatlasis@secfu.net

AS15669
[BIX­BG Bulgarian Internet eXchange (BIX.BG ltd.)]

AS1241
[FORTHNET­GR Forthnet]

AS29049
[DELTA­TELECOM­AS Delta Telecom LTD.]

AS6939
[HURRICANE ­ Hurricane Electric, Inc.]

AS32934
[FACEBOOK ­ Facebook, Inc.]

AS15169
[GOOGLE ­ Google Inc.]

AS10310
[YAHOO­1 ­ Yahoo!]

2001:7f8:58::1b1b:0:1

2001:470:0:2b6::1

2a02:2148:2:11::11

2001:7f8::80a6:0:1

2a02:2148:2:65::22

2a02:2148:2:9::11

2a02:2149:8609:5400:20d:b9ff:fe28:c214

2a02:2148:77:50:2::17

2a02:2148:2:6::22

2001:4860:1:1:0:4d9:0:1

2001:7f8::2846:0:1

2a00:1288:f006:1fe::e3 2620:0:1cff:dead:beef::1343

2001:470:0:2b5::1

2620:0:1cff:dead:bef0::cf

2a03:2880:f010:301:face:b00c:0:1 http SA

2620:0:1cff:dead:beef::1348

2001:4860:0:1::617

2a00:1450:4017:800::1011 http SA

2a00:1288:f006:1fe::3001 http SA

 Antonios Atlasis, aatlasis@secfu.net

Generic IPv6 TraceroutingGeneric IPv6 Tracerouting

● Use the -tr switch.
● You can define your destinations in any of the ways described

before.
● It can be combined with all the advanced / fuzzing techniques

described later.

● The results are presented in a line per-target.
● The number before the IPv6 address gives how many hops

away is this address from the source node.

 Antonios Atlasis, aatlasis@secfu.net

Generic IPv6 TraceroutingGeneric IPv6 Tracerouting

● Optional Parameters:
– -max_ttl <ttl> Define the maximum TTL to be used

during the multi-parallel traverouting packets.

– -min_ttl <ttl> Define the minimum TTL to be used
during the multi-parallel traverouting packets.

– -l4 <proto> The layer-4 protocol to be used for
the tracerouting messages. Possible values: tcp,
udp, icmpv6 (default)

– -l4_data <proto_data> The data to be used as a
layer 4 payload.

 Antonios Atlasis, aatlasis@secfu.net

TCP / UDP ScanningTCP / UDP Scanning

● -sS perform a SYN (half-open) TCP scan (default)
● -sA perform an ACK TCP scan
● -sX perform an XMAS TCP scan
● -sR perform a RESET TCP scan
● -sF perform a FIN TCP scan
● -sN perform a NULL TCP scan
● -sU perform UDP Scanning
● Define your destination ports, using either a comma-

separated list, or a range of ports or a combination of
them using the -p switch.

 Antonios Atlasis, aatlasis@secfu.net

TCP/UDP Port ScanningTCP/UDP Port Scanning

● Define your destination ports, using the -p
switch as:
– A comma-separated list, e.g. -p 22,80,443,21

– A range of ports, e.g. -p 22-100

– Or, a combination of them, e.g. -p 80,22-40,443,21

– Default range (if not defined): ports 1 to 1024

● Source ports are randomised per destination.

 Antonios Atlasis, aatlasis@secfu.net

TCP Port Scanning – Example TCP Port Scanning – Example
OutputOutput

● The results of a TCP port scanning can be, OPEN, CLOSED
and FILTERED (no response).

● You get additional information when you get a response
(OPEN/CLOSED cases)

 Antonios Atlasis, aatlasis@secfu.net

UDP Port Scanning – Example UDP Port Scanning – Example
OutputOutput

 Antonios Atlasis, aatlasis@secfu.net

IPv6-Specific Scanning AttacksIPv6-Specific Scanning Attacks

 Antonios Atlasis, aatlasis@secfu.net

IPv6 Path MTU DiscoveryIPv6 Path MTU Discovery

 Antonios Atlasis, aatlasis@secfu.net

IPv6 Path MTU DiscoveryIPv6 Path MTU Discovery

● A technique to dynamically discover the Path MTU
(PMTU) of a path (RFC 1981).
– A source node initially assumes that the PMTU of a path is the

(known) MTU of the first hop in the path.

– If any of the packets sent on that path are too large to be
forwarded by some node along the path, that node will discard
them and return ICMPv6 Packet Too Big messages. Upon
receipt of such a message, the source node reduces its
assumed PMTU for the path based on the MTU of the
constricting hop as reported in the Packet Too Big message.

– The Path MTU Discovery process ends when the node's
estimate of the PMTU is less than or equal to the actual
PMTU.

Source: RFC 1981

 Antonios Atlasis, aatlasis@secfu.net

IPv6-Specific Scanning AttacksIPv6-Specific Scanning Attacks

● Path MTU Discovery

-pmtu It performs Path MTU Discovery.

-mtu The initial MTU to use for path MTU
discovery (default=1500).

 Antonios Atlasis, aatlasis@secfu.net

Task 1Task 1

● Find out “passively” (without generating any traffic)
what there is around in the network regarding IPv6.

● Find out “alive” systems.
● Ping them (all in one command).
● Find out services that they offer.

– Send the traffic only to alive systems

– Experiment with the number of ports vs number of threads

● If we weren't in a LAN, we could also find al the hops
to our targets, and the Path MTU to them.

 Antonios Atlasis, aatlasis@secfu.net

IPv6 Scanner ExamplesIPv6 Scanner Examples

● passive scanning: ./chiron_scanner.py vboxnet0
-rec -stimeout 50

● multi-ping scan: ./chiron_scanner.py vboxnet0 -mpn
● ping request:

./chiron_scanner.py vboxnet0 -sn -d
fdf3:f0c0:2567:7fe4:a00:27ff:fe74:ddaa

● TCP SYN SCAN:

./chiron_scanner.py vboxnet0 -d
fd9e:488f:c9e9:b6fd:a00:27ff:fe10:8fc -sS -p 22,443-
445,80

 Antonios Atlasis, aatlasis@secfu.net

The IPv6 Routing Extension The IPv6 Routing Extension
Header and the Type-0 Routing Header and the Type-0 Routing

Extension HeaderExtension Header

 Antonios Atlasis, aatlasis@secfu.net

The IPv6 Routing HeaderThe IPv6 Routing Header

● Used by an IPv6 source to list one or more
intermediate nodes to be "visited" on the way to
a packet's destination.

● All IPv6 nodes must be able to process routing
headers (nodes = routers + hosts).

 Antonios Atlasis, aatlasis@secfu.net

The Type 0 RoutingThe Type 0 Routing
0 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 20 1 2 3 4 5 6 7 8 9 30 1

Next Header Hdr Ext Len = 2N 0 Segments Lef

Reserved

Address 1

...

Address N

● Equivalent to IPv4 lose source routing.
● Address N is the IPv6 address of the final destination, address 1, 2, 3, ..., N-1 are the

IPv6 addresses of the intermediate routers.
● Routers and hosts process them.

 Antonios Atlasis, aatlasis@secfu.net

Type 0 Routing Security Type 0 Routing Security
ImplicationsImplications

● Firewall Evasion (e.g. if an intermediate target
is allowed by a firewall, but the last one, “hided”
in the Routing Header, is not).

● DoS Amplification attacks (by bouncing packets
between two routers several times).

● Fortunately, with RFC 5095 in Dec 2007 Type 0
Routing Headers in IPv6 has been deprecated.

 Antonios Atlasis, aatlasis@secfu.net

IPv6-Specific Scanning AttacksIPv6-Specific Scanning Attacks

● Type 0 Routing Header Support Detection

-rh0

-l4 <proto> The layer-4 protocol to be used.
Possible values: tcp, udp, icmpv6 (default).

-l4_data <proto_data> The data to be used as a
layer 4 payload.

 Antonios Atlasis, aatlasis@secfu.net

2. Crafting Arbitrary Neighbor 2. Crafting Arbitrary Neighbor
Discovery MessagesDiscovery Messages

 Antonios Atlasis, aatlasis@secfu.net

Crafting Arbitrary Neighbor Crafting Arbitrary Neighbor
Discovery MessagesDiscovery Messages

● Router Advertisement Messages
● Router Solicitation Messages
● Neighbor Advertisement Messages
● Neighbor Solicitation Messages
● Router Redirect
● Packet Too Big

 Antonios Atlasis, aatlasis@secfu.net

Router Advertisement MessagesRouter Advertisement Messages

● RFC 4861: They are sent out periodically or in a
response to Router Solicitations

● Some critical parameters:
– Router lifetime (in seconds): 0 to 65535

– M bit: Managed Address Configuration Flag. It indicates that
IPv6 addresses are available via DHCPv6.

– O bit: Other Configuration Flag. It indicates that other
address configuration (e.g. DNS) is available via DHCPv6.

– Prefix / prefix length information: Prefixes that are on-link.

– Router priority: 0 (Medium), 1 (High), 2 (Reserved), 3
(Low)

 Antonios Atlasis, aatlasis@secfu.net

Potential Router Advertisement Potential Router Advertisement
Attacks Attacks

● Send fake RA messages, using your machine's
address, to potentially put you in the middle
(you should also DoS the legitimate router).

● Spoof the IPv6 source address to DoS
legitimate router by:
– Setting Router lifetime = 0

– Setting Router priority to Low (in combination with
fake RA messages).

● Unset M/O flags: Implicitly DoS DHCPv6.
Token 2: 6600-7098-7032-1840-3109

 Antonios Atlasis, aatlasis@secfu.net

Router Advertisement MessagesRouter Advertisement Messages

-ra Send Router Advertisement (messages)

-chlim <Current Hop Limit> Advertised Current Hop Limit - can be between 0 and 255. Default
value for ND messages: 255

-M Managed Address Configuration Flag. Default: False

-O Other Configuration Flag. Default: False

-res <reserved> Reserved field. Default Value: 0. Can be between 0 and 63

-pr <PREFIX> The IPv6 prefix to use. Example: fe80:224:54ff:feba:: Default="fe80::”

-rl <ROUTER_LIFETIME> The Router Lifetime - in seconds - for the Router Advertisement
message - can be between 0 and 65535

-r_time <REACHABLE_TIME> Reachable_time (in milliseconds) for Router Advertisement
messages

-r_timer <RETRANS_TIMER> Retrans timer (in milliseconds) for Router Advertisement messages

-rp <ROUTER_PRIORITY> The Router Priority (default: high). Possible values
0: Medium
1: High
2: Reserved
3: Low

-pr-length <PREFIX_LENGTH> The IPv6 prefix length to use

-mtu <DMTU> The MTU value to use.

 Antonios Atlasis, aatlasis@secfu.net

Router Solicitation MessagesRouter Solicitation Messages

-rsol Send Router Solicitation (messages)

-res <reserved> Reserved field. Default
Value: 0

 Antonios Atlasis, aatlasis@secfu.net

Neighbor Advertisement Neighbor Advertisement
MessagesMessages

● RFC 4861:
– They are sent out in response to NS or,

– they are sent unsolicited in order to (unreliably) propagate
information quickly.

● Some critical parameters:
– Router flag: It indicates that the sender is a router

– S flag: It indicates that the advertisement was sent in
response to a Neighbor Solicitation message.

– O flag: It indicates that the advertisement should override
an existing entry and update the cached link-layer address.

 Antonios Atlasis, aatlasis@secfu.net

Neighbor Advertisement AttacksNeighbor Advertisement Attacks

● Spoofed NA messages can be used for
Neighbor cache poisoning in order to:
– To launch DoS attacks

– To launch MITM attacks.

– To notify other recipients for a fake router, etc.

 Antonios Atlasis, aatlasis@secfu.net

Neighbor Advertisement Neighbor Advertisement
MessagesMessages

-neighadv Send neighbor advertisement messages. Default: False

-r Set the Router Flag for ICMPv6 Neighbor Advertisement messages.
Default: False

-sol Set the Solicited Flag for ICMPv6 Neighbor Advertisement messages.
Default: False

-o Set the Override Flag for ICMPv6 Neighbor Advertisement messages.
Default: False

-ta <TARGET_ADDRESS> The IPv6 target address to be used. This is (or
should be) actually the IPv6 address of the sender. The target address, if not
specified using the -ta switch, is auto set to the IPv6 address of your machine.

-tm <TARGET_MAC>The MAC target address to be used. This is (or should
be) actually the link-layer address of the sender. The target MAC (link-layer)
address, if not specified using the -tm switch, is auto set to the MAC address of
your machine.

-res <reserved> Reserved field. Default Value: 0

 Antonios Atlasis, aatlasis@secfu.net

Neighbor Solicitation MessagesNeighbor Solicitation Messages

-neighsol Send neighbor advertisement messages.
Default: False

-ta <TARGET_ADDRESS> The IPv6 target address to be
used. This is (or should be) actually the IPv6 address of the
target. The target address, if not specified using the -ta
switch, is auto set to the IPv6 address of your machine.

-tm <TARGET_MAC>The MAC target address to be used.
This is (or should be) the link-layer address of the sender.
The target MAC (link-layer) address, if not specified using
the -tm switch, is auto set to the MAC address of your
machine.

-res <reserved> Reserved field. Default Value: 0

 Antonios Atlasis, aatlasis@secfu.net

Redirect MessageRedirect Message

● RFC 4861: They are sent to inform a host of a
better first-hop node, or that the destination is in
fact a neighbor.

 Antonios Atlasis, aatlasis@secfu.net

Router Redirect AttacksRouter Redirect Attacks

● Again, properly spoofed Router Redirect
messages can be used to:
– To put yourself in a middle for specific

destination(s).

– DoS (by putting a Fake Router)

– DoS (by informing falsely that an off-link destination
is on-link).

etc...

 Antonios Atlasis, aatlasis@secfu.net

Router RedirectRouter Redirect

-rd Send Router Redirect (messages)

-da <DESTINATION_ADDRESS> The IPv6 destination address to
be used in an ICMPv6 Router Redirect message

-ta <TARGET_ADDRESS> The IPv6 target address (Fake Router)
to be used in an ICMPv6 Router Redirect message, or the same with
the destination address if destination is a neighbor.

-tm <TARGET_MAC> The MAC target address (Fake Router) to
be used in an ICMPv6 Router Redirect message

-rt <RANDOM_TARGET> Randomise the target IPv6 address to
use as a Fake Router in an ICMPv6 Redirect message.

-pr <IPv6 prefix> The IPv6 network prefix to use. Example:
fe80:224:54ff:feba:: Default="fe80::” This switch is used in

combination with -rt switch.

 Antonios Atlasis, aatlasis@secfu.net

Router Redirect NotesRouter Redirect Notes

● If target_address is not defined, your machine's
source address is used (assuming that you want to
place your machine as a router for the specific
destination).

● If destination_address is not defined, “::” is used as
a destination address.

● When use as a destination address the ff02::1
(multicast address), it auto-selects the broadcast
destination MAC address 33:33:00:00:00:01.

(this is also the case in all the other ND messages).

 Antonios Atlasis, aatlasis@secfu.net

ICMPv6 Packet Too Big MessagesICMPv6 Packet Too Big Messages

● Used to discover and take advantage of paths with PMTU
greater than the IPv6 minimum link MTU.

● It makes possible two denial-of-service attacks, both
based on a malicious party sending false Packet Too Big
messages to a node.
– In the first attack, the false message indicates a PMTU much

smaller than reality. ... It will, however, result in suboptimal
performance.

– In the second attack, the false message indicates a PMTU larger
than reality. This could cause temporary blockage as the victim
sends packets that will be dropped by some router. ...Frequent
repetition of this attack could cause lots of packets to be
dropped.

 Antonios Atlasis, aatlasis@secfu.net

ICMPv6 Packet Too Big MessagesICMPv6 Packet Too Big Messages

-big Send ICMPv6 Packet Too Big messages

-mtu <DMTU> The MTU value to use.

 Antonios Atlasis, aatlasis@secfu.net

IPv6 ND Messages ExamplesIPv6 ND Messages Examples

Launch your sniffer (e.g. wireshark) to observe the packets that
you craft, the traffic that you send and the responses.

Do not use wireshark filters this time.

 Antonios Atlasis, aatlasis@secfu.net

Task 2Task 2

● Sent simple IPv6 Router Advertisement Multicast
messages.

● Send Fake MTU information (bigger or smaller).
● DoS implicitly a router

– No matter what the destination is

– For specific destinations

● DoS specific off-link destinations
● Pretend yourself to be a router for specific destinations.
● Send spoofed Neighbor Advertisements messages.

 Antonios Atlasis, aatlasis@secfu.net

IPv6 ND Messages ExamplesIPv6 ND Messages Examples

● Simple IPv6 Router Advertisement Multicast
messages

./chiron_nd.py vboxnet0 -ra -d ff02::1
● Fake MTU

./chiron_nd.py vboxnet0 -ra -mtu 3000 -d ff02::1
● Define Router Lifetime (in seconds)

./chiron_nd.py vboxnet0 -ra -mtu 3000 -m
07:00:00:00:00:01 -rl 0 -d ff02::1

 Antonios Atlasis, aatlasis@secfu.net

IPv6 ND Messages ExamplesIPv6 ND Messages Examples

● Set the Router priority to Low

./chiron_nd.py vboxnet0 -ra -mtu 3000 -m 07:00:00:00:00:01
-rl 0 -rp 3 -d ff02::1

● Advertise Specific IPv6 Network

./chiron_nd.py vboxnet0 -ra -mtu 3000 -m 07:00:00:00:00:01
-rl 0 -rp 1 -pr fe80:224:54ff:feba:: -pr-length 120 -d ff02::1

● Send Neighbor Advertisement messages

./chiron_nd.py vboxnet0 -neighadv -d
fdf3:f0c0:2567:7fe4:a00:27ff:fe74:ddaa -tm
0a:00:27:00:00:01 -ta fdf3:f0c0:2567:7fe4:800:27ff:fe00:1 -r
-o -sol

 Antonios Atlasis, aatlasis@secfu.net

Experiment yourselfExperiment yourself

● How would you “mislead” IPv6 clients to use
another IPv6 router?

● What kind of messages would you use?
● Experiment yourself :-)

 Antonios Atlasis, aatlasis@secfu.net

3. An IPv4-to-IPv6 Proxy3. An IPv4-to-IPv6 Proxy

 Antonios Atlasis, aatlasis@secfu.net

The Need for an IPv4-to-IPv6 The Need for an IPv4-to-IPv6
ProxyProxy

● Many of our favourite Penetration Testing tool
do not support, at least not yet, IPv6.

● Even if they do so, they are used exactly in the
same way as it was used to be in IPv4.

● That is, they do not “exploit” all the features and
the capabilities of the IPv6 protocols, such as
the IPv6 Extension Headers.

 Antonios Atlasis, aatlasis@secfu.net

Chiron IPv4-to-IP6 ProxyChiron IPv4-to-IP6 Proxy

● It operates like a proxy between the IPv4 and
the IPv6 protocol.

● It is not a common proxy like web proxy,
because it operates at layer 3.

● It accepts packets at a specific IPv4 address,
extract the layer header and its payload, and
sends them to a “target” using IPv6:

● However, it can also add one or more IPv6
Extension headers.

 Antonios Atlasis, aatlasis@secfu.net

IPv4-to-IPv6 Proxy ConnectionsIPv4-to-IPv6 Proxy Connections

Target
(listening to an
IPv6 address)

Attacking
Program

(sending traffic
using an IPv4
address)

Chiron Proxy
(listening internally to an
IPv4 address, sending
traffic using external
IPv6 address)

Attacker

External
interface

IPv6 address

Launch your attacking
program sending the
traffic to IPv4 address
where proxy listens to.

Proxy extracts layer4 and
payload, manipulates it,
recalculates the checksum and
sends it to the IPv6 destination
using as a source address the
one of the external interface

IPv6
NET

Pur
e

IP
v6

 tr
af

fic

Response in IP
v6

Proxy extracts layer 4, adds
an IPv4 header and sends
the packet to the attacking
program

 Antonios Atlasis, aatlasis@secfu.net

IPv4-to-IPv6 Proxy ParametersIPv4-to-IPv6 Proxy Parameters

● To use the tool, you must define, apart from the
interface, at least the following parameters too:

● ipv4_sender the ipv4 address of the
software that send the packet.

● ipv4_receiver the ipv4 address where the
proxy listens to

● You can use loopback addresses to keep it simple.
● You must also define your IPv6 destination using

-d, but JUST ONE.

 Antonios Atlasis, aatlasis@secfu.net

The Tricky Part The Tricky Part
Configure the Local FirewallConfigure the Local Firewall

● As already said, the framework does not use the
OS stack but it's own library.

● When you send packets using the framework
(e.g. a TCP SYN packet) and the other replies
(SYN ACK in our example), your OS, which
does not know anything about this, it will RESET
(RST) the connection.

● To this end, you must temporarily configure your
host firewall to drop such outgoing RST packets
to the specific IPv6 destination.

 Antonios Atlasis, aatlasis@secfu.net

Caution – Configure the Local Caution – Configure the Local
FirewallFirewall

● For the time being, you have to do it on your
own.

● In an updated version it will be configured
automatically for you (at least for ip(6)tables
and pf).

 Antonios Atlasis, aatlasis@secfu.net

Task 3: An IPv4-to-IPv6 ProxyTask 3: An IPv4-to-IPv6 Proxy
ExampleExample

● You need to launch nikto against an IPv6-
enabled web server.

● Your target's IPv6 address is
fdf3:f0c0:2567:7fe4:a00:27ff:fe74:ddaa

● Your machine's IPv6 address is
fdf3:f0c0:2567:7fe4:800:27ff:fe00:0

 Antonios Atlasis, aatlasis@secfu.net

IPv4-to-IPv6 Proxy IPv4-to-IPv6 Proxy
– 1. Configure ip(6)tables– 1. Configure ip(6)tables

● ip6tables -I OUTPUT 1 -p icmpv6 --icmpv6-type
destination-unreachable -s
fdf3:f0c0:2567:7fe4:800:27ff:fe00:0 -d
fdf3:f0c0:2567:7fe4:a00:27ff:fe74:ddaa -j DROP

● iptables -I OUTPUT 1 --source 127.0.0.3
--destination 127.0.0.1 -p tcp --tcp-flags RST
RST -j DROP

● ip6tables -I OUTPUT 1 -p tcp --dport 80 -s
fdf3:f0c0:2567:7fe4:800:27ff:fe00:0 -d
fdf3:f0c0:2567:7fe4:a00:27ff:fe74:ddaa -j DROP

Target Our host machine

 Antonios Atlasis, aatlasis@secfu.net

IPv4-to-IPv6 Proxy ExampleIPv4-to-IPv6 Proxy Example
2. Launch the Proxy2. Launch the Proxy

./chiron_proxy.py vboxnet0 127.0.0.1 127.0.0.3
-d fdf3:f0c0:2567:7fe4:a00:27ff:fe74:ddaa
-threads 10

where:
– 127.0.0.1 the IPv4 source address of the attacking

tool.

– 127.0.0.3 the IPv4 address where the proxy listens
to.

 Antonios Atlasis, aatlasis@secfu.net

IPv4-to-IPv6 Proxy ExampleIPv4-to-IPv6 Proxy Example
3. Run your Program3. Run your Program

● perl nikto.pl -h http://127.0.0.3

● It will take some extra time in comparison with
direct communication, due to extra
manipulation.

 Antonios Atlasis, aatlasis@secfu.net

4. Manipulation Techniques of 4. Manipulation Techniques of
IPv6 PacketsIPv6 Packets

They can be combined with the Scanner, the
Proxy or the ND modules.

http://127.0.0.3/

 Antonios Atlasis, aatlasis@secfu.net

Manipulation Techniques of IPv6 Manipulation Techniques of IPv6
PacketsPackets

● (Simple) fragmentation
● Flooding
● Crafting arbitrary IPv6 Extension Headers,

regarding:
– Type of Extension Headers

– Number of occurrences of specific types of Extension

– Order of Extension Headers

● All the above techniques can be combined with
the Scanner, the Proxy or the ND modules.

 Antonios Atlasis, aatlasis@secfu.net

Performing (Simple) Performing (Simple)
FragmentationFragmentation

-nf <number_of_fragments>

-delay <number_of_fragments> sending
delay between two consecutive fragments (in
seconds).

 Antonios Atlasis, aatlasis@secfu.net

How to Fragment Layer 4How to Fragment Layer 4

● -l4_data <layer_4_data> the data (payload)
of the layer4 protocol

● Examples:
./chiron_scanner.py vboxnet0 -d fd9e:488f:c9e9:b6fd:a00:27ff:fe10:8fc
-sn -l4_data "AAAAAAAA" -nf 2

./chiron_scanner.py p10p1 -sn -d fd9e:488f:c9e9:b6fd:a00:27ff:fe10:8fc
-l4_data `python -c 'print "AABBCCDD" * 120'` -nf 4

In the last example, the layer-4 payload is 120 timed the “AABBCCDD”
string.

 Antonios Atlasis, aatlasis@secfu.net

Flooding AttacksFlooding Attacks

● Can be combined with all the pre described methods.

-fl flood the targets

-flooding-interval <FLOODING_INTERVAL> the interval
between packets when flooding the targets (default: 0.1
seconds)

-ftimeout <FLOODING_TIMEOUT>

 The time (in seconds) to flood your target
(default: 200 seconds).

● Example:

./chiron_scanner.py p10p1 -d www.yahoo.com -rh0 -fl

 Antonios Atlasis, aatlasis@secfu.net

Making Arbitrary IPv6 Extension Making Arbitrary IPv6 Extension
HeadersHeaders

or,

How to Fuzz (manually) IPv6 How to Fuzz (manually) IPv6
Protocol ImplementationProtocol Implementation

 Antonios Atlasis, aatlasis@secfu.net

IPv6 New Features: IPv6 IPv6 New Features: IPv6
Extension HeadersExtension Headers

● It is not just the huge address space.
● One of the most significant changes: The

introduction of the IPv6 Extension Headers.

 Antonios Atlasis, aatlasis@secfu.net

The IPv6 Extension HeadersThe IPv6 Extension Headers

● Hop-by-Hop Options [RFC2460]
● Routing [RFC2460]
● Fragment [RFC2460]
● Destination Options [RFC2460]
● Authentication [RFC4302]
● Encapsulating Security Payload [RFC4303]
● MIPv6, [RFC6275] (Mobility Support in IPv6)
● HIP, [RFC5201] (Host Identity Protocol)
● shim6, [RFC5533] (Level 3 Multihoming Shim Protocol for IPv6)
● All (but the Destination Options header) SHOULD occur at

most once.

Known from the
IPSec

 Antonios Atlasis, aatlasis@secfu.net

An IPv6 vs an IPv4 DatagramAn IPv6 vs an IPv4 Datagram

Multiple
of 8-octets

Multiple
of 8-octets

IPv6 Header

Next Header value =
Extension Header 1

Extension Header 1
Next Header value =
Extension Header 2

... Extension
Header n

Next Header
value = Layer 4

Header

Layer 4
protocol
header

Layer 4
Payload

IPv4 Header Layer 4
protocol
header

Layer 4
Payload IPv4

datagram

IPv6
datagram

 Antonios Atlasis, aatlasis@secfu.net

Fragmenting an IPv6 Header Fragmenting an IPv6 Header
ChainChain

● The Unfragmentable Part consists of the IPv6
header plus any extension headers that must be
processed by nodes en route to the destination, that
is, all headers up to and including the Routing
header if present, else the Hop-by-Hop Options
header if present, else no extension headers.

● The Fragmentable Part consists of the rest of the
packet, that is, any extension headers that need be
processed only by the final destination node(s), plus
the upper-layer header and data.

Source: RFC 2460

 Antonios Atlasis, aatlasis@secfu.net

IPv6 FragmentationIPv6 Fragmentation

Unfragmentable
part

Fragmentable part

Unfragmented packet

Fragment 1

IPv6 header +
some of the extension
headers

Unfragmentable
part

Fragment
Header

Fragment 2Unfragmentable
part

Fragment
Header

Fragment 3Unfragmentable
part

Fragment
Header

 Antonios Atlasis, aatlasis@secfu.net

Fuzzing (Manually) IPv6 Fuzzing (Manually) IPv6
Extension HeadersExtension Headers

-lfE <comma_separated_list_of_headers_to_be_fragmented>
Define an arbitrary list of Extension Headers
which will be included in the fragmentable part.

-luE <comma_separated_list_of_headers_that_remain_unfragmented>
Define an arbitrary list of Extension Headers
which will be included in the unfragmentable
part.

 Antonios Atlasis, aatlasis@secfu.net

Supported IPv6 Extension Supported IPv6 Extension
HeadersHeaders

To use them, just use the corresponding header
values.

Examples will follow:

Header Value IPv6 Extension Header

0 Hop-by-hop Header

4 IPv4 Header

41 IPv6 Header

43 Routing Header

44 Fragment Extension Header

60 Destination Options Header

Any other value IPv6 Fake (non-existing) Header

Token 3: 9457-1932-4132-3902-3458

 Antonios Atlasis, aatlasis@secfu.net

Defining Explicitly the Values of Defining Explicitly the Values of
the IPv6 Extension Headersthe IPv6 Extension Headers

Header
Value

IPv6 Extension Header IPv6 Extension Header Parameters

0 Hop-by-hop Header optdata, otype

4 IPv4 Header src (the source address),dst (the destination
address)

41 IPv6 Header src (the source address),dst (the destination
address)

43 Routing Header type (the type of the Routing header), reserved (the
reserved field), segleft (segments left), addresses
(the IPv6 addresses to follow)

44 Fragment Extension Header offset (the fragment offset), m (the MF bit),id (the
fragment id), res1 (1st reserved field),res2 (2nd
reserved field)

60 Destination Options Header optdata, otype

 Antonios Atlasis, aatlasis@secfu.net

IPv6 Extension HeadersIPv6 Extension Headers
ExamplesExamples

 Antonios Atlasis, aatlasis@secfu.net

Task 4: Adding Several IPv6 Task 4: Adding Several IPv6
Extension HeadersExtension Headers

● Add a Destination Options Header during a ping scan (-sn)

./chiron_scanner.py vboxnet0 -d fd9e:488f:c9e9:b6fd:a00:27ff:fe10:8fc
-sn -luE 60

● Add a Hop-by-Hop Header and a Destination Options header
during a ping scan (-sn)

./chiron_scanner.py vboxnet0 -d fd9e:488f:c9e9:b6fd:a00:27ff:fe10:8fc
-sn -luE 0,60

● Add a Hop-by-Hop and three Destination Options header in a row
during a ping scan (-sn)

./chiron_scanner.py vboxnet0 -d fd9e:488f:c9e9:b6fd:a00:27ff:fe10:8fc
-sn -luE 0,3x60

 Antonios Atlasis, aatlasis@secfu.net

Fragment Layer 4 and Some of Fragment Layer 4 and Some of
the IPv6 Extension Headersthe IPv6 Extension Headers

./chiron_scanner.py vboxnet0 -d
fd9e:488f:c9e9:b6fd:a00:27ff:fe10:8fc -sn -luE
0,3x60 -lfE 2x60 -l4_data "AAAAAAAA" -nf 4

 Antonios Atlasis, aatlasis@secfu.net

Increasing the Size of the Options Increasing the Size of the Options
Header ArbitrarilyHeader Arbitrarily

-seh <SIZE_OF_EXTHEADERS> the size of
the Options Extension header in octets of
bytes.

Example:

./chiron_scanner.py vboxnet0 -d
fd9e:488f:c9e9:b6fd:a00:27ff:fe10:8fc -sn -lfE 60 -nf 4 -seh 3

 Antonios Atlasis, aatlasis@secfu.net

Define Explicitly the Values of the Define Explicitly the Values of the
IPv6 Extension HeadersIPv6 Extension Headers

44"(offset=3;res1=3;m=1;res2=234)"

● Hop-by-Hop Extension Header

./chiron_scanner.py vboxnet0 -d fd9e:488f:c9e9:b6fd:a00:27ff:fe10:8fc -luE
0"(otype=128;optdata=AAAAAAA)" -sn

● Destination Options Header

./chiron_scanner.py vboxnet0 -d fd9e:488f:c9e9:b6fd:a00:27ff:fe10:8fc -luE
60"(otype=128;optdata=AAAAAAAA)" -sn

● Type 0 Routing Header

./chiron_scanner.py vboxnet0 -d fd9e:488f:c9e9:b6fd:a00:27ff:fe10:8fc -luE
43"(type=0;addresses=2002::1-2002::2;segleft=2)" -sn

 Antonios Atlasis, aatlasis@secfu.net

Defining Explicitly the Values of the Defining Explicitly the Values of the
IPv6 Extension HeadersIPv6 Extension Headers

● IPv4 Tunneling

./chiron_scanner.py vboxnet0 -d fd9e:488f:c9e9:b6fd:a00:27ff:fe10:8fc -luE
4"(src=192.156.55.44;dst=38.55.44.3)" -sn

● IPv4 Tunneling preceded by a Destination Options Header

./chiron_scanner.py vboxnet0 -d fd9e:488f:c9e9:b6fd:a00:27ff:fe10:8fc -luE
60,4"(src=192.156.55.44;dst=38.55.44.3)" -sn

● IPv6 Tunneling preceded by two Destination Options Header and
three Fragment Extension Headers

./chiron_scanner.py vboxnet0 -d fd9e:488f:c9e9:b6fd:a00:27ff:fe10:8fc -luE
2x60"(otype=128;optdata=AAAAAAAA)",3x44"(offset=3;res1=3;m=1;res2=
234)" -sn

 Antonios Atlasis, aatlasis@secfu.net

““Playing” With The Next Header Playing” With The Next Header
Values of the IPv6 Ext. HeadersValues of the IPv6 Ext. Headers

 Antonios Atlasis, aatlasis@secfu.net

EachEach Fragment is Composed Fragment is Composed
OfOf

● The Unfragmentable Part of the original
packet,...and the Next Header field of the last
header of the Unfragmentable Part changed to
44.

● A Fragment header containing:
– The Next Header value that identifies the first

header of the Fragmentable Part of the original
packet.

Source: RFC 2460

 Antonios Atlasis, aatlasis@secfu.net

Reassembling a Fragmented Reassembling a Fragmented
IPv6 DatagramIPv6 Datagram

● The Unfragmentable Part of the reassembled
packet consists of all headers up to, but not
including, the Fragment header of the first
fragment packet (that is, the packet whose
Fragment Offset is zero), with the following
change(s):
– The Next Header field of the last header of the

Unfragmentable Part is obtained from the Next
Header field of the first fragment's Fragment header.

Source: RFC 2460

 Antonios Atlasis, aatlasis@secfu.net

Abusing The Next Header Values Abusing The Next Header Values
Using ChironUsing Chiron

● You can change the Next Header value of the
Fragment Header of the last fragment to the
Layer-4 header value (instead of the correct
header value, which should be the one of the 1st
Extension Header of the Fragmentable part),
using the -wc switch.

 Antonios Atlasis, aatlasis@secfu.net

Abusing The Next Header Abusing The Next Header
Values: ExampleValues: Example

● 1st Fragment:

IPv6 main Header + Fragment Ext Header (offset
=0, M=1, next header =60) + Dest Opt Header (8
bytes long, no data on it but padding, next header =
6)

● 2nd Fragment:

IPv6 main header + Fragment Ext Header (offset=1,
M=0, next header = 6) + TCP header.

 Antonios Atlasis, aatlasis@secfu.net

The Good Stuff is, The Good Stuff is,

● That you can combine all the IPv6 Extension
Headers techniques with:
– Network scanning

– On the local-link using the corresponding ND
messages.

– With the proxy

– With fragmentation,

– With flooding, etc

 Antonios Atlasis, aatlasis@secfu.net

Example: Evasion TechniquesExample: Evasion Techniques

● Use 8 to 10 Fragment Extension Headers in an
Atomic Fragment

● Fragment the IPv6 datagram and send the
layer-4 header at fragment 10 or later.

● Construct the IPv6 header chains using wrong
next header values: Use the -wc switch.

 Antonios Atlasis, aatlasis@secfu.net

Future WorkFuture Work

● IPv6 Attacking module
– Will implement some of the most well-known IPv6 attacking tool.
– Although already implemented by other frameworks, it will be

possible to combine them with arbitrary IPv6 Extension Headers.

● Auto-Fuzzing of the IPv6 Extension Header parameters.
● Fragmentation overlapping
● Multi-processing instead of multi-threading.
● The Chiron project is also supported by the Brucon 5x5

program.
● Updated versions will be uploaded at www.secfu.net.

 Antonios Atlasis, aatlasis@secfu.net

Please, Keep in TouchPlease, Keep in Touch

● For:
– bugs (there should be many),

– new requested features / modules / capabilities

– Any other comments / proposals, etc.

● You can reach me at: aatlasis@secfu.net

http://www.secfu.net/

 Antonios Atlasis, aatlasis@secfu.net

About About ChironChiron

● Chiron, the son of Titan Chronos, was the wise half-man half-horse
creature of the Centaur tribe in Greek mythology. As an exception to the
other wild and violent Centaurs, Chiron studied music, medicine and
prophesy from the god Apollo, and hunting skills under the god Artemis.

● Chiron learned much from the gods and passed his knowledge on to
heroes in mythology. Among his pupils were many heroes like Theseus,
Achilles, Jason, and many others. It is pronounced “Kai-ron” in English.

● This IPv6 framework was named after Centaur Chiron because it
resembles him in wisdom (I hope), strength (testing), ...hunting (IPv6
targets), but mainly, in knowledge transfer.

● Enjoy! :-)

mailto:aatlasis@secfu.net

 Antonios Atlasis, aatlasis@secfu.net

Questions?Questions?

Wait: We haven't finished yet :-)Wait: We haven't finished yet :-)

 Antonios Atlasis, aatlasis@secfu.net

ChallengeChallenge

● Find a technique to evade Snort.
– Use simple ping request first

● Then, try chiron proxy and nikto to attack a web
server.

● By aware, Snort is watching you!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121

