

Penetration Testing in the Age of IPv6

Jayson Salazar jsalazar@ernw.de Rafael Schaefer

rschaefer@ernw.de

5/28/2015 © ERNW GmbH | Carl-Bosch-Str. 4 | D-69115 Heidelberg

#2 www.ernw.de

Road Map

- Why IPv6 Penetration Testing?
- Introduction to IPv6, Core Protocols
- Attack Surface of IPv6 Networks
- ¬ IPv6 Compared to IPv4
- ¬ Tools of the Trade
- ¬ DEMOS
- Conclusions

Why IPv6 Penetration Testing?

Increasingly popular and astonishingly complex

Personal appliances are increasingly incorporating networking capabilities.

 Concrete efforts are being directed towards materializing the "Internet of Things."

Everything gets a networking interface!

IPv6 deployment has been slowly but steadily taking off.

The IPv6 Vision

Two Questions come to Mind, though

- Is IPv6 **understood** sufficiently and **mature enough** for deployment?
- Do we have the **know-how** for **securing** such **shape-shifting networks**?

Source	Destination	Protocol	Len	Info
fe80::8271:1f06:54c2:6f0	ff02::1	ICMPv6	142	Router Advertisement from 80:71:1f:c2:06:f0
2001:67c:6ec:1620:f482:8175:abb1:6079	ff02::1:ffc2:6f0	ICMPv6	86	Neighbor Solicitation for fe80::8271:1f06:54
fe80::lc0a:bba2:a026:e0db	ff02::1:ffc2:6f0	ICMPv6	86	Neighbor Solicitation for fe80::8271:1f06:54
2001:67c:6ec:1620:f482:8175:abb1:6079	ff02::1:ffc2:6f0	ICMPv6	86	Neighbor Solicitation for fe80::8271:1f06:54
fe80::1c0a:bba2:a026:e0db	ff02::1:ffc2:6f0	ICMPv6	86	Neighbor Solicitation for fe80::8271:1f06:54
fe80::8271:1f06:54c2:6f0	fe80::da9d:67ff:fe98:eca6	ICMPv6	86	Neighbor Solicitation for fe80::da9d:67ff:fe
fe80::8271:1f06:54c2:6f0	fe80::da9d:67ff:fe98:eca6	ICMPv6	78	Neighbor Advertisement fe80::8271:1f06:54c2:
2001:67c:6ec:1620:f482:8175:abb1:6079	ff02::1:ffc2:6f0	ICMPv6	86	Neighbor Solicitation for 2001:67c:6ec:1620:
fe80::6154:4138:fb5a:163	ff02::1:ffc2:6f0	ICMPv6	86	Neighbor Solicitation for fe80::8271:1f06:54
2001:67c:6ec:1620:8470:56a5:142b:caac	ff02::1:ffc2:6f0	ICMPv6	86	Neighbor Solicitation for 2001:67c:6ec:1620:
fe80::lc0a:bba2:a026:e0db	ff02::1:ffc2:6f0	ICMPv6	86	Neighbor Solicitation for fe80::8271:1f06:54
2001:67c:6ec:1620:da9d:67ff:fe98:eca6	ff02::1	ICMPv6	62	Echo (ping) request id=0xf7c6, seq=0, hop li
2001:67c:6ec:1620:da9d:67ff:fe98:eca6	ff02::1	ICMPv6	78	Neighbor Advertisement 2001:67c:6ec:1620:daS

Introduction to Ipv6

Protocols Running the Show

What's New in IPv6? - I

- Several things have changed.
- Yes, the HUGE address space is the most wellknow one.
- But, we also have the IPv6 **Extension Headers**

What's New in IPv6? - II

- Router Advertisements and the Neighbor-Discovery protocol
- Multicasting plays a major role in IPv6
- There are new complex beasts such as the Multicast Listener Discovery protocol

IPv6 in a Nutshell - I

- Networking is still networking, BUT
- Bigger address-space, no NAT needed or possible
- ICMP was overhauled, is the basis for other protocols
- **Oversimplifying**, ND is to IPv6 what ARP was to IPv4
- ND encompasses other minor sub-functionalities

IPv6 in a Nutshell - II

- ¬ **ND** is **more complex** than ARP
- MLD was created and plays a 'major' role in IPv6.
 It's highly complex, often misunderstood and has some serious scalability issues.
- Half the **action** in **IPv6** happens on the **Local-Link**
- So, what are the attack vectors in IPv6's expanded attack surface?

A Look at the IPv4 and IPv6 Headers

ICMPv6 101

- First specified in RFC 2462, latest in RFC 4443.
- ICMPv6 is an integral part of every IPv6 implementation, the foundation of other protocols.

Type(Value)	Description
1	Destination Unreachable (with codes 0,1,2,4)
2	Packet too big (Code 0)
3	Time Exceeded (Code 0,1)
4	Parameter Problem (Code 0,1,2)
128	Echo Request (Code 0)
129	Echo Reply (Code 0)
130	Multicast Listener Query
131	Multicast Listener Report
132	Multicast Listener Done
133	Router Solicitation
134	Router Advertisement
135	Neighbor Solitication
136	Neighbor Advertisement
137	Redirect

Neighbor Discovery 101

- IS the soul of the Local-Link
- ¬ ND's **duties**:
 - Neighbor Discovery
 - Router Discovery
 - Prefix Discovery
 - Parameter Discovery
 - Address auto-configuration
 - Next-Hop Determination
 - Duplicate Address Detection

Multicast Listener Discovery 101

- The Querier sends periodical Queries to which Listeners with reportable addresses reply.
- The Querier does not learn which or how many clients are interested in which sources.
- The Querier uses reported information for deciding what ingress data to forward.

Attack Surface in IPv6 Networks

IPv6, a Fancy Code-Word for Excruciating Complexity

5/28/2015 © ERNW GmbH | Carl-Bosch-Str. 4 | D-69115 Heidelberg

#15 www.ernw.de

Host-Level Discrepancies

- Unexpected differences in kernels and IPv6-Stacks behavior.
 - <u>Should packets with source-address 1 be</u> processed on an external interface?
- These differences lead to lack of awareness with respect to IPv6 hardening in different platforms
- Also, services must often be configured differently. Hence, admins usually slip. E.g. services listening on all IPv6 capable interfaces.

Even Applications Behave Differently

- Applications working appropriately in IPv4 usually lack IPv6 security capabilities, mostly due to having been untested.
- One such example is the Filezilla server, whose autoban functionality doesn't work with IPv6.
- <u>http://blog.webernetz.net/2014/05/14/filezilla-</u> server-bug-autoban-does-not-work-with-ipv6/

Evil Fragmentation and Extension Headers

- All Black-Listing approaches to security controls
 have a hard time in IPv6 networks.
- Mostly due to extension-headers and fragmentation.
- But also because of **ambiguities** in the RFCs
- This makes possible the evasions of IDPS devices and security mechanisms such as <u>DHCPv6 Guard</u> and RA-Guard.

Don't Forget Profiting from the Protocols

- ICMPv6, ND and MLD are perfect candidates for performing reconnaissance.
- Complex protocols with complex packet structures such as MLD make perfect targets for performing DoS attacks.
- A poorly hardened Local-Link in an IPv6 network makes leveraging ND for malicious purposes, e.g. MitM attacks.

haxpo 🛯 hitb

By-Passing ACLs

- ACLs are most effective when the characteristics of undesired behavior are clear.
- IPv6 provides a great deal of flexibility, one does not have to be content with a 'standard deployment'.
- However, this very flexibility is one major enemy of ACLs based filtering.
- Which packets should be rejected?
 - Those coming from a certain address?
 - With one extension-header or two?
 - Fragmented or not fragmented?

Fiddling with ND Messages

- Fill, and keep filled, the Neighbor-Cache of a legitimate host in the network.
- Reply with spoofed Neighbor-Advertisements to Neighbor-Solicitations.
- Unsolicited Spoofed Neighbor-Advertisements and Neighbor-Solicitations.
- Flooding hosts and causing a DoS consumption due to poorly implemented IPv6 stacks.
- Remember, the Local-Link is "trustworthy"

Playing with Router Advertisements

- Router-Advertisements are, as part of autoconfiguration approach, fundamental part of IPv6.
 Once again, the Local-Link is considered trustworthy!
- A potential attacker can send Rogue-RAs into the network in order to cause DoS conditions or redirect traffic due to host using the information contained therein.
 - Lots of DoS conditions to be found here!

IPv6 Compared to IPv4

The Good, the Bad and the Ugly

5/28/2015 © ERNW GmbH | Carl-Bosch-Str. 4 | D-69115 Heidelberg

#23 www.ernw.de

IPv6 vs. IPv4 some Numbers

Alexa Top	IPv6 enabled	Prozent
10	5	50%
100	32	32%
1000	162	16.2%
10000	955	9.55%
100000	8030	8.03%
500000	35041	7.01%
1.000.000.		

So, What do we Find when we Look Further?

IPv6 port state service	IPv4 Port state service
Dude, this is boring	80/tcp open http 443/tcp open https
9090/tcp filtered zeus-admin	

Attacking Node Provisioning

- IPv4 has been more or less a stable for the last decade.
- This isn't the case with IPv6
- IPv6's vision is one of automation, where your
 fridge can easily join the cyber-party called IoT.
- But, what happens when said devices present heterogeneous behavior?
- What always happens ... the network breaks!

There are several IPv6 Stacks

What can we do about It?

What can we do about It?

- **Read** the **specifications** of your core **devices**!
- Ask the vendors for their **REAL security features**
- Harden your network
- IPv6 IS NOT plug-and-play!
- Stay updated with regard to IPv6:

ERNW's hardening guides for IPv6

Why is IPv6 so Hard?

- Trust model and automatized provisioning.
- Complexity
- Lack of awareness and understanding of the technologies involved
- Stack heterogeneity
- Limited resources available to defenders

Tools of the Trade

How to Interact with the IPv6 Stack

5/28/2015 © ERNW GmbH | Carl-Bosch-Str. 4 | D-69115 Heidelberg

#31 www.ernw.de

Profiting from IPv6 for Reconnaissance

- Leverage ICMP as usual, ICMPv6.
- IPv6 has 'done away with broadcasting', employ multicasting for host discovery.
- There's one protocol we haven't talked about,
 MLD. Every IPv6 host must reply to and process messages associated with the Multicast-Listener-Discovery protocol
 - **Fragmentation** can help with **tricking systems** into replying to ICMPv6 ECH0-Requests.

Some Well-Known Attacking Frameworks

The Hackers' Choice THC-IPv6 framework

<u>https://www.thc.org/thc-ipv6/</u>

- Si6 Networks IPv6-Toolkit

– <u>http://www.si6networks.com/tools/ipv6toolkit/</u>

Anonios Atlasis' Chiron

- http://www.secfu.net
- Although they somewhat overlap, they also complement each other.

The Hackers' Choice IPv6 Toolkit

- A rich set of tools allowing certain interactions with IPv6 and its associated protocols.
- Although easy to use, it can hardly be customized
- Some interesting tools:
 - alive6
 - dnsrevnum6
 - ndpexaust

- fake_router
- flood_router
- fake_advertise6

The Chiron IPv6 Testing Framework

- Chiron offers several modules geared towards different potential attack vectors:
 - IPv6 Scanner
 - IPv6 Link-Local Message Creator
 - IPv4-to-IPv6 Proxy
- Makes no decisions for you regarding the validity of the packets, it simply is IPv6-aware.
- Really flexible, but due to being written in Python and based on Scapy can be easily customized.

haxpo @ hitb

 IPv6 host fingerprinting is a bit immature but does the job most of the time

- Useful **plugins**:

- Targets-ipv6-multicast-mld
- IPv6-ra-flood
- Targets-ipv6-multicast-invalid-dst
- Targets-ipv6-multicast-echo
- IPv6-node-info
- Resolveall

Internet of Things? Crash All the Things!

http://core0.staticworld.net/

- More like, Internet of Broken Things!
- If they are **connected** they have an **IPv6 stack**
- If they have an IPv6 stack they have data buffers
- If they have data buffers, someone slipped up
- If someone slips, attackers profit
- Fuzzing IPv6 stacks is incredibly important for empirically assessing the robustness of devices we rely on.

Metasploit and IPv6

- Several reconnaissance and post-exploitation modules support IPv6
- It isn't any harder than in IPv4
- Useful IPv6 modules:
 - auxiliary/gather/dns_srv_enum
 - auxiliary/scanner/discovery/ipv6_multicast_ping
 - auxiliary/scanner/discovery/ipv6_neighbor
 - auxiliary/scanner/discovery/ipv6_neighbor_router_advertisement
 - Good number of IPV6 payload-handlers for Meterpreter

5/29/2015 © ERNW GmbH | Carl-Bosch-Str. 4 | D-69115 Heidelberg

Web @ IPv6

- Enough networking, what do we do webpenetration testing with?
- There are several alternatives:
 - As usual, BURP
 - Arachni for automated tests
 - SQLMap for your post-exploitation needs
 - For getting the big picture, Nessus
- For more information see: <u>Penetration Testing</u> <u>Tools that Support IPv6</u>

haxpo C hitb

DEMO I – Behind the Iron Curtains

Evading IDPS Devices with Fragmentation

5/29/2015 © ERNW GmbH | Carl-Bosch-Str. 4 | D-69115 Heidelberg

#40 www.ernw.de

IDPSS Evasion – The Scenario

DEMO II – No Video-Conferencing for You

Abusing MLD to trigger DoS conditions in Routers

5/28/2015 © ERNW GmbH | Carl-Bosch-Str. 4 | D-69115 Heidelberg

#42 www.ernw.de

MLD - The Scenario

As anything in InfoSec, Stay Informed

- Our Blog with #IPv6 filter, insinuator.net
- IPv6 hackers' mailing-list
- IETF mailing-list, our personal favorite v60ps.
- NANOG's mailing-list

Conclusions

- **Developments** are still **taking place** within the IPv6 specification; to deal with IPv6 is to deal with **change** and the **associated** security **risks**.
- Complexity Kills!
- IPv6 is not IPv4 with a longer address space, they differ greatly.
- Since understanding is the father of situational awareness, and situational awareness is the mother of security, study and understand IPv6!

Some Resources for those Interested in More

- Regarding tools, this ERNW Newsletter is a good start: <u>Penetration Testing Tools that Support IPv6</u>
- For guidance with respect to hardening IPv6 networks, NIST's <u>Guidelines for the Secure Deployment of IPv6</u>
- TNO's <u>Testing the Security of IPv6 Implementations</u> offers a good, albeit in some cases exaggerated, overview of attack vectors present in IPv6.
- For thorough study of IPv6 security and its intricacies, Hagen's, Cisco's or Microsoft's books should do.

Thanks for your Time!

Enjoy Amsterdam!

Jayson Salazar jsalazar@ernw.de Rafael Schaefer

rschaefer@ernw.de