
Generic RAID Reassembly using Block-Level Entropy

Generic RAID Reassembly using Block-Level
Entropy

Christian Zoubek, Sabine Seufert, Andreas Dewald

30.04.2016

Generic RAID Reassembly using Block-Level Entropy

Outline

1 Introduction
Motivation
Prerequisities

2 Parameter detection using Entropy
RAID type
Stripe size
Stripe map

3 Evaluation
Correctness

4 Conclusion

Generic RAID Reassembly using Block-Level Entropy

Introduction

Outline

1 Introduction
Motivation
Prerequisities

2 Parameter detection using Entropy
RAID type
Stripe size
Stripe map

3 Evaluation
Correctness

4 Conclusion

Generic RAID Reassembly using Block-Level Entropy

Introduction

Motivation

What is RAID

Redundant Array of Independent (originally ’Inexpensive’) Disks

- Several physical disks combined

Abstraction layer between hard disks and file system
One logical unit

- Depending on RAID it is able to

recover Data lost by hardware failure
speed up Data transfer
heavily increase capacity

Generic RAID Reassembly using Block-Level Entropy

Introduction

Motivation

Why recovery

Most server environments use RAID
Seizure does not guarantee knowledge about RAID parameters

- Undocumented RAID parameters

- Administrator not willing to cooperate

- Broken RAID controller

⇒ Some or all parameters missing

Missing parameters may lead to data loss

Generic RAID Reassembly using Block-Level Entropy

Introduction

Prerequisities

RAID parameters

RAID defined by several parameters

- RAID type/level (RAID 0, RAID 1, etc.)

- Stripe size

Size of each contiguous block
Common: 1KB - 1MB

- Disk count

- Stripemap

Order of disks
How data is distributed over disks

Generic RAID Reassembly using Block-Level Entropy

Introduction

Prerequisities

In detail

RAID 1

- All disks save the exact same data

- Redundancy by mirroring

→ Recovery straightforward

RAID 0

- Data distributed over all disks

- No redundancy

→ One broken disk equals to loss of all data

Generic RAID Reassembly using Block-Level Entropy

Introduction

Prerequisities

RAID 5 in detail

RAID 5

- Redundancy through parity

- Data and parity distribution over all disks

→ Mix of failure safety and better performance

- Literature: Different Setups possible

Generic RAID Reassembly using Block-Level Entropy

Introduction

Prerequisities

RAID 5

Properties of common RAID 5 setups

- Parity distribution (describes shift of parity block after each
row)

Left-sided (Parity block shifted from last disk to first)
Right-sided (Parity block shifted from first disk to last)

- Data distribution (describes location of first block of each
row)

symmetric (First data block right to parity block)
asymmetric (First data block at first disk)

Generic RAID Reassembly using Block-Level Entropy

Introduction

Prerequisities

RAID 5 - examples

RAID 5 using 4 disks

0 1 2 P

3 4 P 5

6 P 7 8

P 9 10 11

left asymmetric

P 0 1 2

5 P 3 4

7 8 P 6

9 10 11 P

right symmetric

Generic RAID Reassembly using Block-Level Entropy

Parameter detection using Entropy

Outline

1 Introduction
Motivation
Prerequisities

2 Parameter detection using Entropy
RAID type
Stripe size
Stripe map

3 Evaluation
Correctness

4 Conclusion

Generic RAID Reassembly using Block-Level Entropy

Parameter detection using Entropy

RAID type

Algorithm

Distinguish between RAID 0/1/5 by utilizing their characteristics

- RAID 1 only has mirrored blocks

- RAID 5 uses parity block in each row

Declare counters for occurences of

- Mirrored blocks

- Parity blocks

- None of both

Comparison of counters lead to knowledge of RAID level

Generic RAID Reassembly using Block-Level Entropy

Parameter detection using Entropy

RAID type

Interpretation

Possibility to detect missing RAID 5 disk

- Assumption: Some blocks on missing disk are empty

- Mirrored or parity blocks may be found (Y xor 0 = Y)

RAID-0 RAID-1 RAID-5c RAID-5i

mirrored low high low mean
parity low low high mean
unassigned high low low high

Generic RAID Reassembly using Block-Level Entropy

Parameter detection using Entropy

Stripe size

Algorithm

Find possible sizes using entropy

- Calculate entropy of 512-byte blocks

- Count encounters of each possible byte value
- Probability distribution → H = −

∑
i pi × log(pi)

- Find consecutive blocks with high entropy differences
(Unusual within the same file)

- Validate finding by checking surroundings

- Mark edge as possible interesting address

Generic RAID Reassembly using Block-Level Entropy

Parameter detection using Entropy

Stripe size

Algorithm - continued

After finding some addresses of interest

- Calculate difference between two consecutive addresses

- Find best fitting stripe size

Start with greatest stripe size (we use 2MB)
Difference modulo stripe size
If zero, mark as possible stripe size

Generic RAID Reassembly using Block-Level Entropy

Parameter detection using Entropy

Stripe size

Example

1.75MB file over four disks, RAID 0

Address Disk 0 Disk 1 Disk 2 Disk 3

...
888273920 0 0 0 0
888274432 0 0 0 0
888274944 0 7.50199 7.56131 7.57583
888275456 0 7.53411 7.54758 7.54145
...
888306176 0 7.46816 7.43265 7.48876
888306688 0 7.43318 7.59278 7.60496
888307200 6.14066 7.48741 7.58424 7.49408
888307712 7.64113 7.53735 7.59764 7.46034
...
888732672 7.43689 7.55090 7.52364 7.54029
888733184 7.52416 7.54816 7.57045 7.53455
888733696 7.44034 7.54581 7.46290 0
888734208 7.47576 7.51771 7.57273 0
...

Stripe: 888274944 - 888733696 (= 458752; Stripe: 64KB)

Generic RAID Reassembly using Block-Level Entropy

Parameter detection using Entropy

Stripe map

Disk order

Striped data blocks are written consecutively over the disks

- Empty blocks may indicate position within stripe

- Stripe with empty blocks and used blocks interesting

Algorithm

- Find begin/end of a file within a disk

Calculate entropy of blocks half the stripe size
Rising entropy: begin of a file
Falling entropy: end of a file

Generic RAID Reassembly using Block-Level Entropy

Parameter detection using Entropy

Stripe map

Disk order - Algorithm

Check other disks at same address

- All full with data: Discard

- One or more empty

If begin of a file; Empty blocks were written beforehand
else; empty blocks written after end of file

RAID 0 almost finished

- Only disk order to recover

- Rebuild order by resolving findings

RAID 5 uses parity block

- Disk order not that easy to tell (parity block)

- Derive a disk order for each row in stripe map

Generic RAID Reassembly using Block-Level Entropy

Parameter detection using Entropy

Stripe map

RAID 5 - extension

RAID 5 usually uses map with n rows (n = # disks)

- Find distribution of parity across disks

Fact: The more random data the higher the entropy
Assumption: Parity most often the most random block each
row

→ Derive parity map by comparing entropies of each row

- Find correct row to address:
(
a
s

)
mod(n)

a = address on disk
s = stripe size
n = number of disks

Generic RAID Reassembly using Block-Level Entropy

Parameter detection using Entropy

Stripe map

RAID 5 - Stripe map

Use parity map and row-wise disk order to set properties

- Find parity block of each row

- Check blocks written previous to parity block by the same disk

Always first block → right symmetric
Always last block → left symmetric
Ascending order → right asymmetric
Descending order → left asymmetric

Generic RAID Reassembly using Block-Level Entropy

Evaluation

Outline

1 Introduction
Motivation
Prerequisities

2 Parameter detection using Entropy
RAID type
Stripe size
Stripe map

3 Evaluation
Correctness

4 Conclusion

Generic RAID Reassembly using Block-Level Entropy

Evaluation

Data set

Different RAID setups for data storage

- Low entropy data (text files)

- High entropy data (picture files)

- RAID 0 and RAID 5

- Varying stripe sizes: 16,64,256,1024 [KB]

- File systems: Ext4 and NTFS

Furthermore

- Six Ubuntu installations (3 × RAID 0, 3 × RAID 5)

- Several Software RAIDS (mdadm)

⇒ 38 RAIDs + Software RAIDs

Generic RAID Reassembly using Block-Level Entropy

Evaluation

Stripesize

Optimal threshold for entropy differences dependent on

- File system

- Types of file

- Stripe size

Observations

- NTFS using picture files stable in almost every combination

- Large stripe sizes prefer large entropy differences

- Best fitting in all cases: 0.3 (lower bound) - 7.3 (upper bound)

Generic RAID Reassembly using Block-Level Entropy

Evaluation

Correctness

Stripesize

Some results for different stripe sizes and data

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1 4 16 64 256 1024 4096

P
ro

b
a
b
il
it

y
 i
n
 P

e
rc

e
n
t

Stripesize in KB

Small �les, ext
Small �les, ntfs

Picture �les, ext
Picture �les, ntfs

Generic RAID Reassembly using Block-Level Entropy

Evaluation

Correctness

Stripe map - Parity distribution

Using picture files
Disk 0 Disk 1 Disk 2 Disk 3

0 4958 0 0
0 0 5002 0
0 0 0 4911

4922 0 0 0

Different small files
Disk 0 Disk 1 Disk 2 Disk 3

485 480 497 3805
469 512 3808 478
499 3785 490 498

3800 518 442 510

Generic RAID Reassembly using Block-Level Entropy

Evaluation

Correctness

Summary

Stripe size calculation

- fixed entropy threshold (0.3 and 7.3)

- worked in every case

Stripe map

- Parity distribution worked in every RAID 5 case

- Finding disk order worked in every case but one

RAID 0, small files, great stripe size
Only part of the disk order was recovered

Generic RAID Reassembly using Block-Level Entropy

Conclusion

Outline

1 Introduction
Motivation
Prerequisities

2 Parameter detection using Entropy
RAID type
Stripe size
Stripe map

3 Evaluation
Correctness

4 Conclusion

Generic RAID Reassembly using Block-Level Entropy

Conclusion

Conclusion

Automated reassembly of RAID systems is possible, yet has its
limits

- Will not work on encrypted disks

- Disk with only small files lack enough information

- Nested RAIDs?

Generic RAID Reassembly using Block-Level Entropy

Conclusion

Last slide

Thank you for your attention.
Questions?

Slides and OpenSource tool:
https://www1.cs.fau.de/content/forensic-raid-recovery

	Introduction
	Motivation
	Prerequisities

	Parameter detection using Entropy
	RAID type
	Stripe size
	Stripe map

	Evaluation
	Correctness

	Conclusion

