

0

THE DOG WHISPERER'S HANDBOOK
A Hacker's Guide to the BloodHound Galaxy ɀ @SadProcessor

1

TABLE OF CONTENTS

A - BLOODHOUND CONCEPT & TOOL EVOLUTION ____________________________________ 3

A.1 ȝ Attackers think in Graphs... 3

A.2 ȝ Graph Theory in a Nutshell 5

A.3 ȝ Awe! Cute Little Puppy... 6

A.4 ȝ Nodes, Edges & Paths 8
A.4.1 ȝ Nodes 8

A.4.2 ȝ Edges 8

A.4.3 ȝ Paths 9

A.5 ȝ Xbmljoh!uif!Ephȩ 10
A.5.1 ȝ Defaults 10

A.5.2 ȝ ACLs 15

A.5.3 ȝ Containers 30

A.5.4 ȝ Specials 31

B ȝ BLOODHOUND INSTALL & USER INTERFACE _____________________________________ 36

B.1 ȝ Install Guide 36
B.1.1 ȝ Windows 36

B.1.2 ȝ Linux 36

B.1.3 ȝ Mac/OSX 37

B.2 ȝ UI Tour & Features 37

C ȝ DATA COLLECTION & INGESTION __ 42

C.1 ȝ Data Collection 42

C.2 ȝ Data Ingestion 43

C.3 ȝ Sample Database 43

D - BASIC CYPHER & COMMON QUERIES ___ 44

D.1 ȝ Neo4j Cypher 101 44

D.2 ȝ Common BloodHound Queries 46
D.2.1 ȝ Querying Nodes 46

D.2.2 ȝ Querying Edges 48

D.2.3 ȝ Querying Paths 49

D.3 - Neo4j Browser & Basic Metrics 51
D.3.1 ȝNeo4j Browser 51

D.3.2 ȝ Basic Metric Queries 54

2

E ȝ ADVANCED CYPHER & DB MANIPULATION _______________________________________ 55

E.1 ȝ Moar Cypher 55
E.1.1 ȝ Build- in Queries 56

E.3.2 ȝ Custom Queries 59

E.2 ȝ Database Manipulation 61
E.2.1 ȝ Creating/Deleting Nodes 62

E.2.2 ȝ Adding/Updating/Removing Node property 62

E.2.3 ȝ Creating/Removing Edges 62

E.2.4 ȝ Creating Nodes with Properties & Edges 63

E.2.5 ȝ Nuke the DB 64

E.4 ȝ Debugging Queries 67

F - REST API & OTHER COOL STUFFS __ 70

F.1 ȝ REST API 70
F.1.1 ȝ API setup 70

F.1.2 ȝ API Call - PowerShell Example 71

F.2 ȝ Tweaks & Hacks 71
F.2.1 ȝ CypherDog 73

F.2.2 ȝ DeathStar 74

F.2.3 ȝ AngryPuppy 74

F.2.4 ȝ GoFetch 74

F.2.5 ȝ More Cool Hacks 74

G ȝ OUTRO __ 75

H ȝ APPENDIX ___ 76

H.1 ȝ BloodHound Crew 76

H.2 ȝ Bloodhound Code 76

H.3 ȝ BloodHound Posts 76

H.4 ȝ BloodHound Videos 77

H.5 ȝ Neo4j Cypher 77

3

A - BloodHound Concept & Tool Evolution

A.1 ȝ Attackers think in Graphs...

Nobody knows how it really started, nor how much liquid was needed that late evening, but in the tiny

galaxy of Active Directory security, most would agree that the tool we are going to talk about has been a

real game changer when it comes to attacking (and thus defending) Active directory. No need to introduce

the creators I guess, but quick credit where credit is due.

If you are into windows security and are not following @harmj0y, @_Wald0 & @CptJesus on twitter:

1- Stop this for now

2- Grab an internet connected device of your choice

3- Click on Follow

https://twitter.com/harmj0y
https://twitter.com/_wald0
https://twitter.com/cptjesus

4

ȩ!Boe!xijmf!zpvȡsf!bu!jt, invite yourself to the BloodHound Slack, it's a really cool place for cyber-cybering

your cyberz. @_Wald0 & @CptJesus will welcome you in person like they did for all 2000+ members of the

so called BloodHoundGang.

[cherry on the cake, they even have a @PrimaryTyler with its matching #PrimaryTylerHate channel.

Ipoftumz-!pof!dpvmeo(u!btl!gps!npsfȩ Really. Check it out.]

And if you ever meet any of these fine gentlemen at a security con, tap them on the shoulder and pay

them a couple of beers. These guys are as thirsty as humble boe!ibwf!b!mpu!pg!dzcfsjoh{!gps!tibsfȩ

Now that this is done, and to be fully accurate, it has to be said that there was a French tool called

ȣDifnjot!ef!Dpouspmf!ef!mȡBdujwf!EjsfdupszȤ!uibu!ibt!jotqjsfe!CmppeIpvoe/!Ju!xbt!nbef!cz!Kfbo-Baptiste

Galet & Geraud de Drouas from the ANSSI (kind of French version of the NSA).

Difdl!ju!pvu/!ȣDȡftu!usès tr èt!Dzcfs!npo!bnjȩȤ/!More info can be found here.

Now to get a better idea of the bigger concept around BloodHound and Graph Theory in general, a

MANDATORY READ is a foundational post by John Lambert [aka @JohnLaTwC. #FF]. The dude is Head of

Microsoft Threat Intel, looks like your Math teacher from the late 80s, goes tripping high up in the

npvoubjot!BOE!gbs!pvu!jo!Dzcfs!Tqbdfȩ!Uif!ljoe!pg!hvz!xip!lopxt!tuvggȩ More Cyber-Cool than this,

you just die.

The full title of the post goes like "Attackers thi nk in Graphs, Defenders think in lists. As long as this is

true, Attackers win" . This famous cyber-quote sums up the whole blog-post & concept in an awesome

way, but there is much more to it. Like written in bold a few lines above and here->, this is a MANDATORY

READ. Enjoy it. See you then.

https://bloodhoundgang.herokuapp.com/
https://bloodhoundhq.slack.com/
https://github.com/ANSSI-FR/AD-control-paths
https://github.com/BloodHoundAD/BloodHound/wiki
https://en.wikipedia.org/wiki/Graph_theory
https://github.com/JohnLaTwC/Shared/blob/master/Defenders%20think%20in%20lists.%20Attackers%20think%20in%20graphs.%20As%20long%20as%20this%20is%20true%2C%20attackers%20win.md
https://twitter.com/JohnLaTwC
https://github.com/JohnLaTwC/Shared/blob/master/Defenders%20think%20in%20lists.%20Attackers%20think%20in%20graphs.%20As%20long%20as%20this%20is%20true%2C%20attackers%20win.md

5

A.2 ȝ Graph Theory in a Nutshell

If I had to explain Graph Theory to a 2yr old, he most probably wouldn't understand much, but I would just

open MS Paint and draw something like this:

Gspn!uijt!tjnqmf!hsbqi-!xf!dbo!sfusjfwf!b!mpu!pg!jogp/!J!ipqf!zpv!hfu!juȩ!cfdbvtf!uijt!jt!bt!dpnqmjdbufe!bt

it gets.

Tp!mfuȡt!jnbhjof!b!izqpuifujdbm!Psxfmmjbo!gvuvsf-!xifsf!ivnbojuz!xpvme!cf!jo!tfbsdi!pg!bo!ȣjnqspwfe!

joejwjevbm!bewfsujtjoh!fyqfsjfodfȤ-!boe!xifsf!qfpqmf!xpvme!tvcnju!uifsf!ȣmjlftȤ!up!uif!tztufn!po!b!ebjmz!

basis, and share it with the individuals uifz!ȣlopxȤ/!Mfuȡt just dbmm!uijt!tztufn!ȣFaceLookȤ!ps!tpnfuijohȩ

This fictional FaceLook would just be a huge graph database. With Nodes, Edges and Paths.

Opeft!xpvme!cf!Kpio-!Bmjdf-!qj{{b-!dpmbȩ

Fehft!xpvme!cf!ȣLopxtȤ!ps!ȣMjlftȤ.

Paths would be a series of nodes connected by Edges.

And we could ask the system a lot of great stuff. For example, people who like cola, people who know

people who like pizza, people who like cpmb!xip!lopx!qfpqmf!xip!lopx!qfpqmf!xip!mjlf!qj{{bȩ

Boe!tp!po/!Juȡt!bt!fbtz!bt!uibuȩ!Boe!bt scale, very powerful.

Some say with this tool, one could gain full control over the pizza delivery market by means of targeted

bewfsujtjohȩ!Tpnf!fwfo!tbz!pof!dpvme!jogmvfodf!gpsfjho!fmfdujpot!boe!uisfbufn modern democraciesȩ!

Troll farms, f ake news, collvtjpoȩ!Fopvhi!pg!uijt!dsb{z!eztupqjbo!opo-tfotfȩ!

Mfuȡt!hfu!cbdl!up!sfbmjuzȩ

6

A.3 ȝ Awe! Cute Little Puppy...

Pl-!tp!opx!uibu!xf!eje!uif!cbtjd!jouspevdujpo-!mfuȡt!ejwf!joup!CmppeIpvoe!jutfmg/

Initially design ed with offense in mind, Bloodhound is an Active Directory Object Relationship Graphing

Tool. It serves for the Situational Awareness (Internal Recon) phase in the Attacker Kill Chain model.

BloodHound does not have any offensive capacity itself, but it is a fantastic tool for mapping the targeted

environment and visualizing possible attack paths to get the job done.

If you have played with it already, you probably have felt a bit overwhelmed by the number of features and

quantity of available information it holds. The cute little puppy quickly became ao!bxftpnf!npotufsȩ

https://en.wikipedia.org/wiki/Kill_chain#The_Cyber_Kill_Chain

7

Many say @CptJesus is a machine///!Gblf!Ofxt@!Nbzcf/!Nbzcf!opuȩ!J!qfstpobmmz!uijol!if!jtȩ!Cvu!mjlf!

Uif!Evef!xpvme!tbz-!ȣuibu(t!pomz!mjlf!nz!pqjojpo!nbo///Ȥ!tp!J(mm!mfu!zpv!ibwf!zpvs!pxo!jefb!po!uif!nbuufs/!

Anyways... I believe the easiest way to get to the full extent of it, is to follow the evolution of the tool in a

chronological order. @harmj0y, @_Wald0 and @CptJesus have put in a great amount of effort into

documenting all of it, so the bare minimum we can do is enjoy it as it shoumeȩ

Automated Derivative Admin Search by @_Wald0

Introducing BloodHound by @_Wald0

Intro to Cypher by @CptJesus

The ACL Attack Path Update (v1.3) by @_Wald0

Evolution of the BloodHound Ingestor by @CptJesus

The Object Properties Update (v1.4) by @CptJesus

SharpHound: Technical Details by @CptJesus

SharpHound: Target Selection and API Usage by @CptJesus

The Container Update (v1.5) by @CptJesus

B!Sfe!Ufbnfsȡt!Hvjef!up!HQPt!'!PVt by @_Wald0

BloodHound 2.0 (v2.0) by @CptJesus

Many of the items in this list will be referenced thru out this guide, and you are not expected to read it

now, but you can fulfill all your fut ure needs with a simple click on these links. Feel free to do it at any

time. This guide is just a gathering of stuff I collected here and there, the real juicy stuff you will have to

hp!gfudiȩ!\!=--Good Bloodhound Joke :)]

https://wald0.com/?p=14
https://wald0.com/?p=68
https://blog.cptjesus.com/posts/introtocypher
https://wald0.com/?p=112
https://blog.cptjesus.com/posts/newbloodhoundingestor
https://blog.cptjesus.com/posts/bloodhoundobjectproperties
https://blog.cptjesus.com/posts/sharphoundtechnical
https://blog.cptjesus.com/posts/sharphoundtargeting
https://blog.cptjesus.com/posts/bloodhound15
https://wald0.com/?p=179
https://blog.cptjesus.com/posts/bloodhound20

8

A.4 ȝ Nodes, Edges & Paths

Neo4j, and more generally Graph Theory, uses a specific terminology. This vocabulary will be used thru

pvu!uif!xipmf!hvjef/!Mfuȡt!ublf!b!mppl!bu!ipx!uijt!bqqmjft!up!Cmppeipvoe!boe!Bdujwf!Ejsfdupsz!pckfdutȩ

A.4.1 ȝ Nodes

In the BloodHound world, a Node is an AD object.

At first these were Users, Computers, Groups and Domains.

Tjodf!uif!ȣDpoubjofsȤ!sfmfbtf, OUs and GPOs ibwf!cffo!beefe!)xjui!nbudijoh!Fehft*!up!fyufoe!uif!uppmȡt!

capabilities and bring new attack paths to the game.

A.4.2 ȝ Edges

An Edge is simply the relationship between two AD objects. Initially, possible Edges were MemberOf,

HasSession, AdminTo and TrustedBy. More Edges have been added thru out the evolution of the tool. The

current version of BloodHound counts 18 possible Edges.

The following table details all of them:

Edge Type Source Object Target Object

DEFAULT

MemberOf User/Group/Computer Group

HasSession Computer User

AdminTo User/Group Computer

TrustedBy Domain Domain

ACL

AllExtendedRights Group/User Any

AddMember Group/User Group

ForceChangePassword Group/User User

GenericAll Group/User Any

https://neo4j.com/why-graph-databases/

9

GenericWrite Group/User Any

Owns Group/User Any

WriteDACL Group/User Any

WriteOwner Group/User Any

ReadLAPSPassword Group/User Computer

CONTAINER

Contains Domain/OU OU/User/Computer

GpLink GPO Domain/OU

SPECIAL

CanRDP Group/User Computer

ExecuteDCOM Group/User Computer

AllowedToDelegate Group/User Computer

A.4.3 ȝ Paths

Finally, a Path is a series of Nodes connected by Edges. In BloodHound, it becomes an Attack Path. Each

Edge can be abused to reach the next node. An Attacker can navigate the AD tree just like a subway map

to get to his target. A defender should be aware of those existing attack paths in order to properly

monitor and defend them.

Note: It is important to note th at Edges are directional, and that therefore the attack path is directed.

Edges can only be abused in a specific direction.

10

A.5 ȝ Walking the Dphȩ

In the following section, we will detail each Edge and its matching abuse. All this info can be found in the

UI with a right -click on the selected Edge.

[Disclaimer: It should be noted that this is extracted directly from the BloodHound documentation and

that the author does not specifically endorse the use of any of those tools, or the possible consequences

of running those commands in your environment.]

A.5.1 ȝ Defaults

MemberOf

Info:

Groups in active directory grant their members any privileges the group itself has. If a group has rights

to another principal, users/computers in the group, as well as other g roups inside the group inherit

those permissions.

Abuse Info:

No abuse is necessary. This edge simply indicates that a principal belongs to a security group.

Opsec Considerations:

No opsec considerations apply to this edge

References:

https://adsecurity.org/?tag=ad -delegation

https://www.itprotoday.com/management -mobility/view -or-remove-active-directory -delegated-

permissions

HasSession

Info:

When a user authenticates to a computer, they often leave credentials exposed on the system, which

can be retrieved through LSASS injection, token manipulation/theft, or injecting into a use r's process.

https://adsecurity.org/?tag=ad-delegation
https://www.itprotoday.com/management-mobility/view-or-remove-active-directory-delegated-permissions
https://www.itprotoday.com/management-mobility/view-or-remove-active-directory-delegated-permissions

11

Any user that is an administrator to the system has the capability to retrieve the credential material

from memory if it still exists.

Note: A session does not guarantee credential material is present, only possible.

Abuse Info:

Password Theft

When a user has a session on the computer, you may be able to obtain credentials for the user via

credential dumping or token impersonation. You must be able to move laterally to the computer, have

administrative access on the computer, and the user must have a non-network logon session on the

computer.

Once you have established a Cobalt Strike Beacon, Empire agent, or other implant on the target, you

can use mimikatz to dump credentials of the user that has a session on the computer. While running in

a high integrity process with SeDebugPrivilege, execute one or more of mimikatz's credential

gathering techniques (e.g.: sekurlsa::wdigest, sekurlsa::logonpasswords, etc.), then parse or

investigate the output to find clear -text credentials for othe r users lo gged onto the system.

You may also gather credentials when a user types them or copies them to their clipboard! Several

keylogging capabilities exist, several agents and toolsets have them built - in. For instance, you may use

meterpreter's "keyscan_start" c ommand to start keylogging a user, then "keyscan_dump" to return

the captured keystrokes. Or, you may use PowerSploit's Invoke-ClipboardMonitor to periodically gather

the contents of the user's clipboard.

Token Impersonation

You may run into a situation where a user is logged onto the system, but you can't gather that user's

credential. This may be caused by a host-based security product, lsass protection, etc. In those

circumstances, you may abuse Windows' token model in several ways. First, you may inject your agent

into that user's process, which will give you a process token as that user, which you can then use to

authenticate to other systems on the network. Or, you may steal a process token from a remote

process and start a thread in your agent's process with that user's token. For more information about

token abuses, see the References tab.

12

User sessions can be short lived and only represent the sessions that were present at the time of

collection. A user may have ended their session by the time you move to the computer to target them.

However, users tend to use the same machines, such as the workstations or servers they are assigned

to use for their job duties, so it can be valuable to check multiple times if a user session has started.

Opsec Considerations:

An EDR product may detect your attempt to inject into lsass and alert a SOC analyst. There are many

more opsec considerations to keep in mind when stealing credentials or tokens. For more information,

see the References tab.

References:

Gathering Credentials

http://blog.gentilkiwi.com/mimikatz

https://github.com/gentilkiwi/mimikatz

https:/ /adsecurity.org/?page_id=1821

https://attack.mitre.org/wiki/Credential_Access

Token Impersonation

https://labs.mwrinfosecurity.com/assets/BlogFiles/mwri -security- implications -of-windows-access-

tokens-2008-04-14.pdf

https://github.com/PowerShellMafia/PowerSploit/blob/master/Exfiltration/Invoke -

TokenManipulation.ps1

https://attack.mitre.org/wiki/Technique/T1134

AdminTo

Info:

By default, administrators have several ways to perform remote code execution on Windows systems,

including via RDP, WMI, WinRM, the Service Control Manager, and remote DCOM execution.

http://blog.gentilkiwi.com/mimikatz
https://github.com/gentilkiwi/mimikatz
https://adsecurity.org/?page_id=1821
https://attack.mitre.org/wiki/Credential_Access
https://labs.mwrinfosecurity.com/assets/BlogFiles/mwri-security-implications-of-windows-access-tokens-2008-04-14.pdf
https://labs.mwrinfosecurity.com/assets/BlogFiles/mwri-security-implications-of-windows-access-tokens-2008-04-14.pdf
https://github.com/PowerShellMafia/PowerSploit/blob/master/Exfiltration/Invoke-TokenManipulation.ps1
https://github.com/PowerShellMafia/PowerSploit/blob/master/Exfiltration/Invoke-TokenManipulation.ps1
https://attack.mitre.org/wiki/Technique/T1134

13

Further, administrators have several options for impersonating other users log ged onto the system,

including plaintext password extraction, token impersonation, and injecting into pro cesses running as

another user.

Finally, administrators can often disable host -based security controls that would otherwise prevent the

aforementioned techniques.

Abuse Info:

Lateral movement

There are several ways to pivot to a Windows system. If using Cobalt Strike's beacon, check the help

info for the commands "psexec", "psexec_psh", "wmi", and "winrm". With Empire, consider the

modules for Invoke-PsExec, Invoke-DCOM, and Invoke-SMBExec. With Metasploit, consider the

modules "exploit/windows/smb/psexec", "exploit/windows/winrm/winrm_script_exec", and

"exploit/windows/local/ps_wmi_exec". Additionally, there are several manual methods for remotely

executing code on the machine, including via RDP, with the service control binary and interaction with

the remote machine's service control manager, and remotely instantiating DCOM objects. For more

information about these lateral movement techniques, see the R eferences tab.

Gathering credentials

The most well-known tool for gathering credentials from a Windows system is mimikatz. mimikatz is

built into several agents and toolsets, including Cobalt Strike's beacon, Empire, and Meterpreter. While

running in a high integrity process with SeDebugPrivilege, execute one or more of mimikatz's

credential gathering techniques (e.g.: sekurlsa::wdigest, sekurlsa::logonpasswords, etc.), then parse

or investigate the output to find clear -text credentials for othe r users logged onto the system.

You may also gather credentials when a user types them or copies them to their clipboard! Several

keylogging capabilities exist, several agents and toolsets have them built - in. For instance, you may use

meterpreter's "keyscan_start" co mmand to start keylogging a user, then "keyscan_dump" to return

the captured keystrokes. Or, you may use PowerSploit's Invoke-ClipboardMonitor to periodically gather

the contents of the user's clipboard.

14

Token Impersonation

You may run into a situation where a user is logged onto the system, but you can't gather that user's

credential. This may be caused by a host-based security product, lsass protection, etc. In those

circumstances, you may abuse Windows' token model in several ways. First, you may inject your agent

into that user's process, which will give you a process token as that user, which you can then use to

authenticate to other systems on the network. Or, you may steal a process token from a remote

process and start a thread in your agent's process with that user's token. For more information about

token abuses, see the References tab.

Disabling host-based security controls

Several host-based controls may affect your ability to execute certain techniques, such as credential

theft, process injecti on, command line execution, and writing files to disk. Administrators can often

disable these host-based controls in various ways, such as stopping or otherwise disabling a service,

unloading a driver, or making registry key changes. For more infor mation, see the References tab.

Opsec Considerations:

There are several forensic artifacts generated by the techniques described above. For instance, lateral

movement via PsExec will generate 4697 events on the target system. If the target organization is

collect ing and analyzing those events, they may very easily detect lateral movement via PsExec.

Additionally, an EDR product may detect your attempt to inject into lsass and alert a SOC analyst. There

are many more opsec considerations to keep in mind when abusing administrator privileges. For more

information, see the References tab.

References:

Lateral movement

https://attack.mitre.org/wiki/Lateral_Movement

Gathering Credentials

http://blog.gentilkiwi.com/mimikatz

https://github.com/gentilkiwi/mimikatz

https://attack.mitre.org/wiki/Lateral_Movement
http://blog.gentilkiwi.com/mimikatz
https://github.com/gentilkiwi/mimikatz

15

https://adsecurity.org/?page_id=1821

https://attack.mitre.org/wiki/Credential_Access

Token Impersonation

https://labs.mwrinfosecurity.com/assets/BlogFiles/mwri -security- implications -of-windows-access-

tokens-2008-04-14.pdf

https://gi thub.com/PowerShellMafia/PowerSploit/blob/master/Exfiltration/Invoke -

TokenManipulation.ps1

https://attack.mitre.org/wiki/Technique/T1134

Disabling host-based security controls

https://blog.netspi.com/10 -evil-user-tricks -for -bypassing-anti-virus/

https://www.blackhillsinfosec.com /bypass-anti-virus-run-mimikatz/

Opsec Considerations

https://blog.cobaltstrike.com/2017/06/23/opsec -considerations-for-beacon-commands/

A.5.2 ȝ ACLs

More info here

AllExtendedRights

Info:

Extended rights are special rights granted on objects which allow reading of privileged attributes, as

well as performing special actions.

Abuse Info:

The AllExtendedRights privilege grants both the DS-Replication-Get-Changes and DS-Replication-Get-

Changes-All privileges, which combined allow a principal to replicate objects from the domain. This

can be abused using the lsadump::dcsync command in mimikatz.

Opsec Considerations:

https://adsecurity.org/?page_id=1821
https://attack.mitre.org/wiki/Credential_Access
https://labs.mwrinfosecurity.com/assets/BlogFiles/mwri-security-implications-of-windows-access-tokens-2008-04-14.pdf
https://labs.mwrinfosecurity.com/assets/BlogFiles/mwri-security-implications-of-windows-access-tokens-2008-04-14.pdf
https://github.com/PowerShellMafia/PowerSploit/blob/master/Exfiltration/Invoke-TokenManipulation.ps1
https://github.com/PowerShellMafia/PowerSploit/blob/master/Exfiltration/Invoke-TokenManipulation.ps1
https://attack.mitre.org/wiki/Technique/T1134
https://blog.netspi.com/10-evil-user-tricks-for-bypassing-anti-virus/
https://www.blackhillsinfosec.com/bypass-anti-virus-run-mimikatz/
https://blog.cobaltstrike.com/2017/06/23/opsec-considerations-for-beacon-commands/
https://wald0.com/?p=112

16

When using the PowerView functions, keep in mind that PowerShell v5 introduced several security

mechanisms that make it much easier for defenders to see what's going on with PowerShell in their

network, such as script block logging and AMSI. You can bypass those security mechanisms by

downgrading to PowerShell v2, which all PowerView functions support.

References:

https://github.com/PowerShellMafia/PowerSploit/blob/ dev/Recon/PowerView.ps1

https://www.youtube.com/watch?v=z8thoG7gPd0

AddMember

Info:

The user has the ability to add arbitrary principals, including itself, to the targeted group. Because of

security group delegation, the members of a security group have the same privileges as that group.

By adding itself to the group, an attacker will gain the same privileges tha t the target Group already

has.

Abuse Info:

There are at least two ways to execute this attack. The first and most obvious is by using the built - in

net.exe binary in Windows (e.g.: net group "Domain Admins" dfm.a /add /domain). See the opsec

considerations tab for why this may be a bad idea. The second, and highly recommended method, is by

using the Add-DomainGroupMember function in PowerView. This function is superior to using the

net.exe binary in several ways. For instance, you can supply alternate credentials, instead of needing to

run a process as or logon as the user with the AddMember privilege. Additionally, you have much safer

execution options than you do with spawning net.exe (see the opsec tab).

To abuse this privilege with PowerView's Add-DomainGroupMember, first import PowerView into your

agent session or into a PowerShell instance at the console. You may need to authenticate to the

Domain Controller if you are not running a process as that user. To do this in conjunction with Add-

DomainGroupMember, first create a PSCredential object (these examples comes from the PowerView

help documentation):

https://github.com/PowerShellMafia/PowerSploit/blob/dev/Recon/PowerView.ps1
https://www.youtube.com/watch?v=z8thoG7gPd0

17

$SecPassword = ConvertTo - SecureString 'Password123!' - AsPlainText - Force

$Cred = New - Object System.Management.Automation.PSCredentia l('TESTLABdfm.a',

$SecPassword)

Then, use Add-DomainGroupMember, optionally specifying $Cred if you are not already running a

process as that user:

Add- DomainGroupMember - Identity 'Domain Admins' - Members 'harmj0y' - Credential

$Cred

Finally, verify that the user was successfully added to the group with PowerView's Get-

DomainGroupMember:

Get- DomainGroupMember - Identity 'Domain Admins'

Opsec Considerations:

Executing this abuse with the net binary will require command line execution. If your target

organization has command line logging enabled, this is a detection opportunity for their analysts.

Regardless of what execution procedure you use, this action will generate a 4728 event on the domain

controller that handled the request. This event may be centrally collected and analyzed by security

analysts, especially for groups that are obviously very high privilege groups (i.e.: Domain Admins). Also

be mindful that Powershell 5 introduced several key security features such as script block logging and

AMSI that provide security analysts another detection opportunity.

You may be able to completely evade those features by downgrading to PowerShell v2.

References:

https://github.com/PowerShellMafia/PowerSploit/blob/dev/Recon/PowerView.ps1

https://www.youtube.com/watch?v=z8thoG7gPd0

https://www.ultimatewindowssecurity.com/securitylog/encyclopedia/event.aspx?even tID=4728

ForceChangePassword

Info:

https://github.com/PowerShellMafia/PowerSploit/blob/dev/Recon/PowerView.ps1
https://www.youtube.com/watch?v=z8thoG7gPd0
https://www.ultimatewindowssecurity.com/securitylog/encyclopedia/event.aspx?eventID=4728

18

The attacker has the capability to change the target user's password without knowing that user's

current password.

Abuse Info:

There are at least two ways to execute this attack. The first and most obvious is by using the built - in

net.exe binary in Windows (e.g.: net user dfm.a Password123! /domain). See the opsec considerations

tab for why this may be a bad idea. The second, and highly recommended method, is by using the Set-

DomainUserPassword function in PowerView. This function is superior to using the net.exe binary in

several ways. For instance, you can supply alternate credentials, instead of needing to run a process as

or logon as the user with the ForceChangePassword privilege. Additionally, you have much safer

execution options than you do with spawning net.exe (see the opsec tab).

To abuse this privilege with PowerView's Set-DomainUserPassword, first import PowerView into your

agent session or into a PowerShell instance at the console. You may need to authenticate to the

Domain Controller as a member of DC_3.DOMAIN.LOCAL if you are not running a process as a

member. To do this in conjunction with Set-DomainUserPassword, first create a PSCredential object

(these examples comes from the PowerView help documentation):

$SecPassword = ConvertTo - SecureString 'Password123!' - AsPlainText - Force

$Cred = New - Object System.Management.Automation.PSCredentia l('TESTLABdfm.a',

$SecPassword)

Then create a secure string object for the password you want to set on the target user :

$UserPassword = ConvertTo-SecureString 'Password123!' -AsPlainText -Force

Finally, use Set-DomainUserPassword, optionally specifying $Cred if you are not already running a

process as target:

Set - DomainUserPassword - Identity andy - AccountPassword $UserPassword - Credential

$Cred

Now that you know the target user's plain text password, you can either start a new agent as that user,

or use that user's credentials in conjunction with PowerView's ACL abuse functions, or perhaps even

RDP to a system the target user has access to. For more ideas and information, see the references tab.

Opsec Considerations:

19

Executing this abuse with the net binary will necessarily require command line execution. If your target

organization has command line logging enabled, this is a detection opportunity for their analysts.

Regardless of what execution procedure you use, this action will generate a 4724 event on the domain

controller that handled the request. This event may be centrally collected and analyzed by security

analysts, especially for users that are obviously very high privilege groups (i.e.: Domain Admin users).

Also be mindful that PowerShell v5 introduced several key security features such as script block

logging and AMSI that provide security analysts another detection opportunity. You may be able to

completely evade those features by downgrading to PowerShell v2.

Finally, by changing a service account password, you may cause that service to stop functioning

properly. This can be bad not only from an opsec perspective, but also a client management

perspective. Be careful!

References:

https://github.com/PowerShellMafia/PowerSploit/blob/dev/Recon/PowerView.ps1

https://www.youtube.com/watch?v=z8thoG7gPd0

https://www.sixdub.net/?p=579

https://www.ultimatewindowssecurity.com/securitylog/encyclopedia/event.aspx?eventID=4724

GenericAll

Info:

The user has GenericAll privileges to the target object. This is also known as full control. This privilege

allows the trustee to ma nipulate the target object however they wish.

Abuse Info:

Full control of a user allows you to modify properties of the user to perform a targeted kerberoast

attack, and also grants the ability to reset the password of the user without knowing their curre nt one.

Targeted Kerberoast

https://github.com/PowerShellMafia/PowerSploit/blob/dev/Recon/PowerView.ps1
https://www.youtube.com/watch?v=z8thoG7gPd0
https://www.sixdub.net/?p=579
https://www.ultimatewindowssecurity.com/securitylog/encyclopedia/event.aspx?eventID=4724

20

B!ubshfufe!lfscfspbtu!buubdl!dbo!cf!qfsgpsnfe!vtjoh!QpxfsWjfxȡt!Tfu-DomainObject along with Get-

DomainSPNTicket.

You may need to authenticate to the Domain Controller as source User if you are not running a process

as that user. To do this in conjunction with Set-DomainObject, first create a PSCredential object (these

examples comes from the PowerView help documentation):

$SecPassword = ConvertTo - SecureString 'Password123!' - AsPlainText - Force

$Cred = New - Object System.Manageme nt.Automation.PSCredential('TESTLABdfm.a',

$SecPassword)

Then, use Set-DomainObject, optionally specifying $Cred if you are not already running a process as

the source User:

Set - DomainObject - Credential $Cred - Identity harmj0y - SET

@{serviceprinci palname=' nonexistent/BLAHBLAH'}

After running this, you can use Get-DomainSPNTicket as follows:

Get- DomainSPNTicket - Credential $Cred harmj0y | fl

The recovered hash can be cracked offline using the tool of your choice. Cleanup of the

ServicePrincipalName can be done with the Set-DomainObject command:

Set - DomainObject - Credential $Cred - Identity harmj0y - Clear serviceprincipalname

Force Change Password

There are at least two ways to execute this attack. The first and most obvious is by using the built- in

net.exe binary in Windows (e.g.: net user dfm.a Password123! /domain). See the opsec considerations

tab for why this may be a bad idea. The second, and highly recommended method, is by using the Set-

DomainUserPassword function in PowerView. This function is superior to using the net.exe binary in

several ways. For instance, you can supply alternate credentials, instead of needing to run a process as

or logon as the user with the ForceChangePassword privilege. Additionally, you have much safer

execution options than you do with spawning net.exe (see the opsec tab).

To abuse this privilege with PowerView's Set-DomainUserPassword, first import PowerView into your

agent session or into a PowerShell instance at the console. You may need to authenticate to the

21

Domain Controller as the source User if you are not running a process as that user. To do this in

conjunction with Set-DomainUserPassword, first create a PSCredential object (these examples comes

from the PowerView help documentation):

$SecPassword = ConvertTo - SecureSt ring 'Password123!' - AsPlainText - Force

$Cred = New - Object System.Management.Automation.PSCredentia l('TESTLABdfm.a',

$SecPassword)

Then create a secure string object for the password you want to set on the target user:

$UserPassword = ConvertTo - SecureStrin g 'Pa ssword123!' - AsPlainText - Force

Finally, use Set-DomainUserPassword, optionally specifying $Cred if you are not already running a

process as the source User:

Set - DomainUserPassword - Identity andy - AccountPassword $UserPassword - Credential

$Cred

Now that you know the target user's plain text password, you can either start a new agent as that user,

or use that user's credentials in conjunction with PowerView's ACL abuse functions, or perhaps even

RDP to a system the target user has access to. For more ideas and information, see the references tab.

Opsec Considerations:

This depends on the target object and how to take advantage of this privilege. Opsec considerations for

each abuse primitive are documented on the specific abuse edges and on the BloodHound wiki.

References:

https://github.com/PowerShellMafia/PowerSploit/blob/dev/Recon/PowerView.ps1

https:/ /www.youtube.com/watch?v=z8thoG7gPd0

https://adsecurity.org/?p=1729

http://www.harmj0y.net/blog/activedirectory/targeted -kerberoasting/

https://posts.specterops.io/a -red-teamers-guide-to-gpos-and-ous-f0d03976a31e

https://github.com/PowerShellMafia/PowerSploit/blob/dev/Recon/PowerView.ps1
https://www.youtube.com/watch?v=z8thoG7gPd0
https://adsecurity.org/?p=1729
http://www.harmj0y.net/blog/activedirectory/targeted-kerberoasting/
https://posts.specterops.io/a-red-teamers-guide-to-gpos-and-ous-f0d03976a31e

22

GenericWrite

Info:

Generic Write access grants you the ability to write to any non-protected attribute on the target object,

including "members" for a group, and "serviceprincipalnames" for a user .

Abuse Info:

B!ubshfufe!lfscfspbtu!buubdl!dbo!cf!qfsgpsnfe!vtjoh!QpxfsWjfxȡt!Tfu-DomainObject along with Get-

DomainSPNTicket.

You may need to authenticate to the Domain Controller as a member of the source Group if you are not

running a process as a member. To do this in conjunction with Set-DomainObject, first create a

PSCredential object (these examples comes from the PowerView help documentation):

$SecPassword = ConvertTo - SecureString 'Password123!' - AsPlainText - Force

$Cred = New - Object System.Management.Automation.PSCredentia l('TESTLABdfm.a',

$SecPassword)

Then, use Set-DomainObject, optionally specifying $Cred if you are not already running a process as

group Member:

Set - DomainObject - Credential $Cred - Identity harmj0y - SET

@{serviceprinci palname='nonexistent/BLAHBLAH'}

After running this, you can use Get-DomainSPNTicket as follows:

Get- DomainSPNTicket - Credential $Cred h armj0y | fl

The recovered hash can be cracked offline using the tool of your choice. Cleanup of the

ServicePrincipalName can be done with the Set-DomainObject command:

Set - DomainObject - Credential $Cred - Identity harmj0y - Clear serviceprincipalname

Opsec Considerations:

This depends on the target object and how to take advantage of this privilege. Opsec considerations for

each abuse primitive are documented on the specific abuse edges and on the BloodHound wiki.

References:

https://github.com/PowerShellMafia/PowerSploit/blob/dev/Recon/PowerView.ps1

https://github.com/PowerShellMafia/PowerSploit/blob/dev/Recon/PowerView.ps1

23

https://www.youtube.com/watch?v=z8thoG7gPd0

http://www.harmj0y.net/blog/activedirectory/targeted -kerberoasting/

Owns

Info:

Object owners retain the ability to modify object security descriptors, regardless of permissions on t he

object's DACL

Abuse Info:

To abuse ownership of a user object, you may grant yourself the GenericAll privilege. This can be

accomplished using the Add-DomainObjectAcl function in PowerView.

You may need to authenticate to the Domain Controller as a member of the source Group if you are not

running a process as a member. To do this in conjunction with Add-DomainObjectAcl, first create a

PSCredential object (these examples comes from the PowerView help documentation):

$SecPassword = ConvertTo - SecureString 'Password123!' - AsPlainText - Force

$Cred = New - Object System.Management.Automation.PSCredentia l('TESTLABdfm.a',

$SecPassword)

Then, use Add-DomainObjectAcl, optionally specifying $Cred if you are not already running a process

as a member of the source Group:

Add- DomainObjectAcl - Credential $Cred - TargetIdentity harmj0y - Rights All

Targeted Kerberoast

B!ubshfufe!lfscfspbtu!buubdl!dbo!cf!qfsgpsnfe!vtjoh!QpxfsWjfxȡt!Tfu-DomainObject along with Get-

DomainSPNTicket.

You may need to authenticate to the Domain Controller as a member of the source Group if you are not

running a process as a member. To do this in conjunction with Set-DomainObject, first create a

PSCredential object (these examples comes from the PowerView help documentation):

$SecPassword = Convert To- SecureString 'Password123!' - AsPlainText - Force

https://www.youtube.com/watch?v=z8thoG7gPd0
http://www.harmj0y.net/blog/activedirectory/targeted-kerberoasting/

24

$Cred = New - Object System.Management.Automation.PSCredentia l('TESTLABdfm.a',

$SecPassword)

Then, use Set-DomainObject, optionally specifying $Cred if you are not already running a process as a

member of the source Group:

Set - DomainObject - Credential $Cred - Identity harmj0y - SET

@{serviceprinci palname='nonexistent/BLAHBLAH'}

After running this, you can use Get-DomainSPNTicket as follows:

Get- DomainSPNTicket - Credential $Cred harmj0y | fl

The recovered hash can be cracked offline using the tool of your choice. Cleanup of the

ServicePrincipalName can be done with the Set-DomainObject command:

Set - DomainObject - Credential $Cred - Identity harm j0y - Clear serviceprincipalname

Force Change Password

There are at least two ways to execute this attack. The first and most obvious is by using the built- in

net.exe binary in Windows (e.g.: net user dfm.a Password123! /domain). See the opsec considerations

tab for why this may be a bad idea. The second, and highly recommended method, is by using the Set-

DomainUserPassword function in PowerView. This function is superior to using the net.exe binary in

several ways. For instance, you can supply alternate credentials, instead of needing to run a process as

or logon as the user with the ForceChangePassword privilege. Additionally, you have much safer

execution options than you do with spawning net.exe (see the opsec tab).

To abuse this privilege with PowerView's Set-DomainUserPassword, first import PowerView into your

agent session or into a PowerShell instance at the console. You may need to authenticate to the

Domain Controller as a member of the source Group if you are not running a process as a member. To

do this in conjunction with Set-DomainUserPassword, first create a PSCredential object (these

examples comes from the PowerView help documentation):

$SecPassword = ConvertTo - SecureString 'Password123!' - AsPlainText - Force

$Cred = New - Object System.Management.Automation.PSCredentia l('TESTLABdfm.a',

$SecPassword)

25

Then create a secure string object for the password you want to set on the target user:

$UserPassword = ConvertTo - SecureString 'Pa ssword123!' - AsPlainText - Force

Finally, use Set-DomainUserPassword, optionally specifying $Cred if you are not already running a

process as a member of the target Group:

Set - DomainUserPassword - Identity andy - AccountPassword $UserPassword - Credential

$Cred

Now that you know the target user's plain text password, you can either start a new agent as that user,

or use that user's credentials in c onjunction with PowerView's ACL abuse functions, or perhaps even

RDP to a system the target user has access to. For more ideas and information, see the references tab.

Cleanup of the added ACL can be performed with Remove-DomainObjectAcl:

Remove- DomainObjectAcl - Credential $Cred - Tar getIdentity harmj0y - Rights All

Opsec Considerations:

When using the PowerView functions, keep in mind that PowerShell v5 introduced several security

mechanisms that make it much easier for defenders to see what's going on with PowerShell in their

network, such as script block logging and AMSI. You can bypass those security mechanisms by

downgrading to PowerShell v2, which all PowerView functions support.

Modifying permissions on an object will generate 4670 and 4662 events on the domain controller that

handled the request.

Additional opsec considerations depend on the target object and how to take advantage of this

privilege. Opsec considerations for each abuse primitive are documented on the specific abuse edges

and on the BloodHound wiki.

References:

https://github.com/PowerShellMafia/PowerSploit/blob/dev/Recon/PowerView.ps1

https://www.youtube.com/watch?v=z8thoG7gPd0

http://www.selfadsi.org/deep -inside/ad-security-descriptors.htm

https://github.com/PowerShellMafia/PowerSploit/blob/dev/Recon/PowerView.ps1
https://www.youtube.com/watch?v=z8thoG7gPd0
http://www.selfadsi.org/deep-inside/ad-security-descriptors.htm

26

WriteOwner

Info:

Object owners retain the ability to modify object security descriptors, regardless of permissions on the

object's DACL.

Abuse Info:

To change the ownership of the object, you may use the Set-DomainObjectOwner function in

PowerView.

You may need to authenticate to the Domain Controller as a member of the source Group if you are not

running a process as a member. To do this in conjunction with Set-DomainObjectOwner, first create a

PSCredential object (these examples comes from the PowerView help documentation):

$SecPassword = ConvertTo - SecureString 'Pas sword123!' - AsPlainText - Force

$Cred = New - Object System.Management.Automation.PSCredentia l('TESTLABdfm.a',

$SecPassword)

Then, use Set-DomainObjectOwner, optionally specifying $Cred if you are not already running a

process as member of the source Group:

Set - DomainObjectOwner - Credential $Cred - TargetIden tity dfm - OwnerIdentity harmj0y

To abuse ownership of a user object, you may grant yourself the GenericAll privilege. This can be

accomplished using the Add-DomainObjectAcl function in PowerView.

You may need to authenticate to the Domain Controller as a member of the source Group if you are not

running a process as a member. To do this in conjunction with Add-DomainObjectAcl, first create a

PSCredential object (these examples comes from the PowerView help documentation):

$SecPassword = ConvertTo - SecureString 'Password123!' - AsPlainText - Force

$Cred = New - Object System.Management.Automation.PSCredential('TESTLABdfm.a',

$SecPassword)

Then, use Add-DomainObjectAcl, optionally specifying $Cred if you are not already running a process

as member of the source Group:

Add- DomainObjectAcl - Credential $Cred - TargetIdentity harmj0y - Rights All

27

 Targeted Kerberoast

B!ubshfufe!lfscfspbtu!buubdl!dbo!cf!qfsgpsnfe!vtjoh!QpxfsWjfxȡt!Tfu-DomainObject along with Get-

DomainSPNTicket.

You may need to authenticate to the Domain Controller as a member of the source Group if you are not

running a process as a member. To do this in conjunction with Set-DomainObject, first create a

PSCredential object (these examples comes from the PowerView help documentation):

$SecPassword = ConvertTo - SecureString 'Password123!' - AsPlainText - Force

$Cred = New - Object System.Management.Automation.PSCredential('TESTLAB dfm.a',

$SecPassword)

Then, use Set-DomainObject, optionally specifying $Cred if you are not already running a process as

member of the source Group:

Set - DomainObject - Credential $Cred - Identity harmj0y - SET

@{serviceprincipalname='nonexistent/BLAHBLAH'}

After running this, you can use Get-DomainSPNTicket as follows:

Get - DomainSPNTicket - Credential $Cred harmj0y | fl

The recovered hash can be cracked offline using the tool of your choice. Cleanup of the

ServicePrincipalName can be done with the Set-DomainObject command:

Set - DomainObject - Credential $Cred - Identity harm j0y - Clear serviceprinc ipalname

Force Change Password

There are at least two ways to execute this attack. The first and most obvious is by using the built- in

net.exe binary in Windows (e.g.: net user dfm.a Password123! /domain). See the opsec considerations

tab for why this may be a bad idea. The second, and highly recommended method, is by using the Set-

DomainUserPassword function in PowerView. This function is superior to using the net.exe binary in

several ways. For instance, you can supply alternate credentials, instead of needing to run a process as

or logon as the user with the ForceChangePassword privilege. Additionally, you have much safer

execution options than you do with spawning net.exe (see the opsec tab).

28

To abuse this privilege with PowerView's Set-DomainUserPassword, first import PowerView into your

agent session or into a PowerShell instance at the console. You may need to authenticate to the

Domain Controller as a member of the source Group if you are not running a process as a member. To

do this in conjunction with Set-DomainUserPassword, first create a PSCredential object (these

examples comes from the PowerView help documentation):

$SecPassword = ConvertTo - SecureString 'Password123!' - AsPlainText - Force

$Cred = New - Object System.Management.Automation.PSCredenti al('TESTLABdfm.a',

$SecPassword)

Then create a secure string object for the password you want to set on the target user:

$UserPassword = ConvertTo - SecureString 'Pa ssword123!' - AsPlainText - Force

Finally, use Set-DomainUserPassword, optionally specifying $Cred if you are not already running a

process as member of the source Group:

Set - DomainUserPassword - Identity andy - AccountPassword $UserPassword - Credential

$Cred

Now that you know the target user's plain text password, you can either start a new agent as that user,

or use that user's credentials in conjunction with PowerView's ACL abuse functions, or perhaps even

RDP to a system the target user has access to. For more ideas and information, see the references tab.

Cleanup of the added ACL can be performed with Remove-DomainObjectAcl:

Remove- DomainObjectAcl - Credential $Cred - Tar getIdentity harmj0y - Rights All

Cleanup for the owner can be done by using Set-DomainObjectOwner once again

Opsec Considerations:

This depends on the target object and how to take advantage of this privilege. Opsec considerations for

each abuse primitive are documented on the specific abuse edges and on the BloodHound wiki.

References:

https:/ /github.com/PowerShellMafia/PowerSploit/blob/dev/Recon/PowerView.ps1

http://www.selfadsi.org/deep -inside/ad-security-descriptors.htm

https://github.com/PowerShellMafia/PowerSploit/blob/dev/Recon/PowerView.ps1
http://www.selfadsi.org/deep-inside/ad-security-descriptors.htm

29

ReadLAPSPassword

Info:

The attacker has the ability to read the password set by Local Administrator Password Solution (LAPS)

on the target computer. The local administrator password for a computer managed by LAPS is stored

jo!uif!dpogjefoujbm!MEBQ!buusjcvuf-!ȣnt-mcs-BenQxeȤ/

Abuse Info:

To abuse this privilege with PowerView's Get-DomainObject, first import PowerView into your agent

session or into a PowerShell instance at the console. You may need to authenticate to the Domain

Controller as the source User if you are not running a process as that user. To do this in conjunction

with Get-DomainObject, first create a PSCredential object (these examples comes from the PowerView

help documentation):

$SecPassword = ConvertTo - SecureString 'Password123!' - AsPlainText - Force

$Cred = New - Object System .Management.Automation.PSCredentia l('TESTLABdfm.a',

$SecPassword)

Then, use Get-DomainObject, optionally specifying $Cred if you are not already running a process as

the source User:

Get- DomainObject windows1 - Credential $Cred - Properties "ms - mcs- AdmPwd",name

Opsec Considerations:

Reading properties from LDAP is an extremely low risk operation.

References:

https://www.specterops.io/assets/resources/an_ace_up_the_sleeve.pdf

https://adsecurity.org/?p=3164

https://www.specterops.io/assets/resources/an_ace_up_the_sleeve.pdf
https://adsecurity.org/?p=3164

30

A.5.3 ȝ Containers

Contains

Info:

GPOs linked to a container apply to all objects that are contained by the container.

Abuse Info:

There is no abuse info related to this edge.

Opsec Considerations:

There are no opsec considerations related to this edge.

References:

https://wald0.com/?p=179

https://blog.cptjesus.com/post s/bloodhound15

GpLink

Info:

A linked GPO applies its settings to objects in the linked container.

Abuse Info:

There is no abuse info related to this edge.

Opsec Considerations:

There are no opsec considerations related to this edge.

References:

https://wald0.com/?p=179

https://blog.cptjesus.com/posts/bloodhound15

https://wald0.com/?p=179
https://blog.cptjesus.com/posts/bloodhound15
https://wald0.com/?p=179
https://blog.cptjesus.com/posts/bloodhound15

31

A.5.4 ȝ Specials

CanRDP

Info:

Remote Desktop access allows you to enter an interactive session with the target computer. If

authenticating as a low privilege user, a privilege escalation may allow you to gain high privi leges on

the system.

Note: This edge does not guarantee privileged execution.

Abuse Info:

Abuse of this privilege will depend heavily on the type of access you have.

PlainText Credentials with Interactive Access

With plaintext credentials, the easiest way to exploit this privilege is using the built in Windows Remote

Desktop Client (mstsc.exe). Open mstsc.exe and input the target Computer. When prompted for

credentials, input the credentials for the source User to initiate the remote desktop connection.

Password Hash with Interactive Access

With a password hash, exploitation of this privilege will require local admini strator privileges on a

system, and the remote server must allow Restricted Admin Mode.

First, inject the NTLM credential for the user you're abus ing into memory using mimikatz:

sekurlsa::pth /user:dfm /domain:testlab.local /ntlm:<ntlm hash> /r un:"mstsc.e xe

/restrictedadmin"

This will open a new RDP window. Input the computer name to initiate the remote desktop connection.

If the target server does not support Restricted Admin Mode, the session will fail.

Plaintext Credentials without Interactive Access

32

This method will require some method of proxying traffic into the network, such as the socks command

in cobaltstrike, or direct internet connection to the target network, as well as the xfreerdp (suggested

because of support of Network Level Authentication (NLA)) tool, which can be installed from the

freerdp -x11 package. If using socks, ensure that proxychains is configured properly. Initiate the remote

desktop connection with the following command:

(proxychains) xfreerdp /u:dfm /d :testlab.local /v:<computer ip>

xfreerdp will prompt you for a password, and then initiate the remote desktop connection.

Password Hash without Interactive Access

This method will require some method of proxying traffic into the network, such as the socks command

in cobaltstrike, o r direct internet connection to the target network, as well as the xfreerdp (suggested

because of support of Network Level Authentication (NLA)) tool, which can be installed from the

freerdp -x11 package. Additionally, the target computer must allow Restric ted Admin Mode. If using

socks, ensure that proxychains is configured properly. Initiate the remote desktop connect ion with the

following command:

(proxychains) xfreerdp /pth:<ntlm hash> /u:dfm /d :testlab.local /v:<computer ip>

This will initiate the remot e desktop connection, and will fail if Restri cted Admin Mode is not enabled.

Opsec Considerations:

If the target computer is a workstation and a user is currently logged on, one of two things will happen.

If the user you are abusing is the same user as the one logged on, you will effectively take over their

session and kick the logged on user off, resulting in a message to the user. If the users are different,

you will be prompted to kick the currently logged on user off the system and log on. If the targe t

computer is a server, you will be able to initiate the connection without issue provided the user you are

abusing is not currently logged in.

Remote desktop will create Logon and Logoff events with the access type RemoteInteractive.

References:

https://michael -eder.net/post/2018/native_rdp_pass_the_hash/

https://www.kali.org/penetration -testing/passing-hash-remote-desktop/

https://michael-eder.net/post/2018/native_rdp_pass_the_hash/
https://www.kali.org/penetration-testing/passing-hash-remote-desktop/

33

ExecuteDCOM

Info:

This can allow code execution under certain conditions by instantiating a COM object on a remote

machine and invoking its methods.

Abuse Info:

The PowerShell script Invoke-DCOM implements lateral movement using a variety of different COM

objects (ProgIds: MMC20.Application, ShellWindows, ShellBrowserWindow, ShellBrowserWindow, and

ExcelDDE). LethalHTA implements lateral movement using the HTA COM object (ProgId: htafile).

One can manually instantiate and manipulate COM objects on a remote machine using the following

PowerShell code. If specifying a COM object by its CLSID:

Remote computer

%DpnqvufsObnf!>!ȣUbshfuDpnqvufsObnfȤ

GUID of the COM object

%dmtje!>!ȣ|gcbf45f9-bf95-4da8-bf98-7d7f691bb459~Ȥ!

$Type = [Type]::GetTypeFromCLSID($clsid, $ComputerName)

$ComObject = [Activator]::CreateInstance($Type)

If specifying a COM object by its ProgID:

Remote computer

%DpnqvufsObnf!>!ȣUbshfuDpnqvufsObnfȤ!

%QsphJe!>!ȣȤ!$!HVJE!pg!uif!DPN!pckfdu

$Type = [Type]::GetTypeFromProgID($ProgId, $ComputerName)

$ComObject = [Activator]::CreateInstance($Type)

Opsec Considerations:

The artifacts generated when using DCOM vary depending on the specific COM object used.

34

DCOM is built on top of the TCP/IP RPC protocol (TCP ports 135 + high ephemeral ports) and may

leverage several different RPC interface UUIDs(outlined here). In order to use DCOM, one must be

authenticated. Consequently, logon events and authentication-specific logs(Kerberos, NTLM, etc.) will

be generated when using DCOM.

Processes may be spawned as the user authenticating to the remote system, as a user already logged

into the system, or may take advantage of an already spawned process.

Nboz!EDPN!tfswfst!tqbxo!voefs!uif!qspdftt!ȣtwdiptu/fyf!-l!EdpnMbvodiȤ!boe!typically have a

dpnnboe!mjof!dpoubjojoh!uif!tusjoh!ȣ!-FncfeejohȤ!ps!bsf!fyfdvujoh!jotjef!pg!uif!EMM!iptujoh!qspdftt!

ȣEmmIptu/fyf!0Qspdfttje;|~ȣ!)xifsf!BqqJe!jt!uif!BqqJe!uif!DPN!pckfdu!jt!sfhjtufsfe!up!vtf*/!Dfsubjo!

COM services are implemented as service executables; consequently, service-relat ed event logs may

be generated.

References:

https://enigma0x3.net/2017/01/05/lateral -movement-using-the-mmc20-application-com-object/

https://enigma0x3.net/2017/01/23/lateral -movement-via-dcom-round-2/

https://enigma0x3.net/2017/09/11/lateral -movement-using-excel-application-and-dcom/

https://enigma0x3.net/201 7/11/16/lateral -movement-using-outlooks-createobject-method-and-

dotnettojscript/

https://www.cybereason.com/blog/leveraging -excel-dde-for- lateral -movement-via-dcom

https://www.cybereason.com/blog/dcom -lateral -movement-techniques

https://bohops.com/2018/04/28/abusing -dcom-for -yet-another-lateral -movement-technique/

https://attack.mitre.org/wiki/Technique/T1175

Invoke-DCOM

https://github.com/rvrsh3ll/Misc -Powershell -Scripts/blob/master/Invoke -DCOM.ps1

LethalHTA

https://codewhitesec.blogspot.com/2018/0 7/lethalhta.html

https://enigma0x3.net/2017/01/05/lateral-movement-using-the-mmc20-application-com-object/
https://enigma0x3.net/2017/01/23/lateral-movement-via-dcom-round-2/
https://enigma0x3.net/2017/09/11/lateral-movement-using-excel-application-and-dcom/
https://enigma0x3.net/2017/11/16/lateral-movement-using-outlooks-createobject-method-and-dotnettojscript/
https://enigma0x3.net/2017/11/16/lateral-movement-using-outlooks-createobject-method-and-dotnettojscript/
https://www.cybereason.com/blog/leveraging-excel-dde-for-lateral-movement-via-dcom
https://www.cybereason.com/blog/dcom-lateral-movement-techniques
https://bohops.com/2018/04/28/abusing-dcom-for-yet-another-lateral-movement-technique/
https://attack.mitre.org/wiki/Technique/T1175
https://github.com/rvrsh3ll/Misc-Powershell-Scripts/blob/master/Invoke-DCOM.ps1
https://codewhitesec.blogspot.com/2018/07/lethalhta.html

35

https://github.com/codewhitesec/LethalHTA/

AllowedToDelegate

Info:

The constrained delegation primitive allows a principal to authenticate as any user to specific services

(found in the msds-AllowedToDelegateTo LDAP property in the source node tab) on the target

computer. That is, a node with this privilege can impersonate any domain principal (including Domain

Admins) to the specific service on the target host.

An issue exists in the constrained delegation where the service name (sname) of the resulting ticket is

not a part of the protected ticket information, meaning that an attacker can modify the target service

name to any service of their choice. For example, if msds-AllowedToDelegateTo is

ȣIUUQ0iptu/epnbjo/dpnȤ-!ujdlfut!dbo!cf!npejgjfe!gps!MEBQ0IPTU0fud/!tfswjdf!obnft-!sftvmujoh!jo!

complete server compromise, regardless of the specific service listed.

Abuse Info:

Abusing this privilege will require either using Benjamin D fmqzȡt!Lflfp!qspkfdu!po!b!dpnqspnjtfe!iptu-!

or proxying in traffic generated from the Impacket library. See the ref erences tab for more detailed

informatio n on exploiting this privilege.

Opsec Considerations:

As mentioned in the abuse info, in order to currently abuse this primitive either the Kekeo binary will

need to be dropped to disk on the target or traffic from Impacket will need to be proxied in. See the

References for more information.

References:

https://labs.mwrinfosecurity.com/blog/trust -years-to-earn-seconds-to-break/

http://www.harmj0y.net/blog/activedirectory/s4u2pwnage/

https://twitter.com/gentilkiwi/status/806643377278173185

https://www.coresecurity.com/blog/kerberos -delegation-spns-and-more

https://github.com/codewhitesec/LethalHTA/
https://labs.mwrinfosecurity.com/blog/trust-years-to-earn-seconds-to-break/
http://www.harmj0y.net/blog/activedirectory/s4u2pwnage/
https://twitter.com/gentilkiwi/status/806643377278173185
https://www.coresecurity.com/blog/kerberos-delegation-spns-and-more

36

B ȝ BloodHound Install & User Interface

B.1 ȝ Install Guide

BloodHound is a self-contained Electron webApp running on top of a Neo4j database.

All the necessary components can be downloaded from the web.

Java 64/32bit: Download

Neo4j Community Edition: Download

BloodHound Binaries: Download

BloodHound Master: Download

Install procedure depends on your OS flavor.

Most up-to-date install procedure can be found here.

B.1.1 ȝ Windows

1. Neo4j requires Java, so make sure you're running the latest version of Java.

2. Go to neo4j.com/download and click on "Download Server"

3. Download the current version of neo4j Server for Windows, selecting either 32 or 64 bit.

4. Extract the contents of the zip folder you downloaded in step 4.

5. Open cmd.exe running as an administrator, and navigate to the folder you extracted the zip into in

step 4.

6. CD into the bin directory, and install neo4j as a service by running neo4j.bat install-service

7. Go back to cmd.exe and start neo4j by typing net start neo4j

8. Verify neo4j is running by navigating to http://localhost:7474/ in a browser. The neo4j web console

should show up here.

9. Run BloodHound.exe from the release found here or build BloodHound from source .

10. Authenticate to the provided sample graph database at bolt://localhost:7687. The username is

"neo4j", and the password is "BloodHound"

Tip: There is also a full neo4j powershell module in t he bin\Neo4j-Management folder.

B.1.2 ȝ Linux

1. Download and install neo4j community edition.

2. Optional: configure the REST API to accept remote connections if you plan to run neo4j and the

PowerShell ingestor on different hosts.

3. Clone the BloodHound GitHub repo.

4. git clone https://github.com/adapti vethreat/Bloodhound

5. Start the neo4j server

https://www.java.com/nl/download/manual.jsp
https://neo4j.com/download-center/#releases
https://github.com/BloodHoundAD/BloodHound/releases
https://github.com/BloodHoundAD/BloodHound/archive/master.zip
https://github.com/BloodHoundAD/BloodHound/wiki/Getting-started
http://localhost:7474/
https://github.com/BloodHoundAD/BloodHound/releases
https://github.com/adaptivethreat/Bloodhound/wiki/Building-BloodHound-from-source
https://neo4j.com/download/
http://neo4j.com/docs/operations-manual/current/security/#security-server

37

6. Run BloodHound from the release found here or build BloodHound from source .

7. ./BloodHound

8. Authenticate to the provided sample graph database at bolt://localhost:7687. The username is

"neo4j", and the password is "BloodHound".

Note: On Kali distro, Bloodhound, including neo4j, can be installed with a simple apt-get.

B.1.3 ȝ Mac/OSX

1. Download and install neo4j community edition.

2. Optional: configure the REST API to accept remote connections if you plan to run neo4j and the

PowerShell ingestor on different hosts.

3. Clone the BloodHound GitHub repo.

4. git clone https://github.com/adaptivethreat/Bloodhound

5. Start the neo4j server, pointing neo4j to the provided sample graph database.

6. Run the BloodHound App from the release found here or build BloodHound from sour ce.

7. Authenticate to the provided sample graph database at bolt://localhost:7687. The username is

"neo4j", and the password is "BloodHound"

B.2 ȝ UI Tour & Features

Pl!tp!mfuȡt!ublf!b!mppl!bu!uijt!qvqqz///!CmppeIpvoe!gjut!jo!b!tjohmf!xfc!qbhf/!Podf!mphhfe jo-!zpv!xpoȡu!

ibwf!up!npwf!boznpsfȩ!Juȡt!bmm!ifsf/

https://github.com/adaptivethreat/BloodHound/releases
https://github.com/adaptivethreat/Bloodhound/wiki/Building-BloodHound-from-source
https://neo4j.com/download/
http://neo4j.com/docs/operations-manual/current/security/#security-server
https://github.com/adaptivethreat/BloodHound/releases
https://github.com/adaptivethreat/Bloodhound/wiki/Building-BloodHound-from-source

38

First thing first, bloodhound is a Hacker tool, so the good @CptJesus had the kindness to bless us with a

Dark Theme. Simply click on the Setting Icon in the top left corner (2 nd from the bottom) and select Dark

Uifnf/!Uphhmf!ju!b!dpvqmf!pg!ujnft!boe!tfmfdu!uif!pof!zpv!mjlfȩ!

ȩ!Ebsl@!J!kind of lofx!juȩ

Opx!mfuȡt!ublf!b!dmptfs!mppl;

These three icons in the bottom right corner are for the Zoom.

You can Zoom In/Out and Reset to default view.

In the top right corner, you will find most of the Settings & Import/Export

functionalities.

The bottom one is for Software Info. Click on it and you will see what version of

bloodhound you are running.

Above it is the Settings icon. See below for more details.

The littl e graph icon is used to change Graph Layout between Directed and

Hierarchical. Hierarchical produces a nice and easy to read output. Directed can

dsfbuf!ibse!up!sfbe!pvuqvu/!Cvu!b!cju!mjlf!dmpvet-!tpnfujnft!zpv!tff!tuvggȩ!J!ifbse!

@_Wald0 is collecting them to later expose the finest pieces of the communityȩ

Next are the Import/Export and Upload buttons.

The Circled arrow at the bottom is for Data Upload. This is a way to ingest

collected zip data. The two other ones are for Export/Import . Graph data can be

exported as PNG to illustrate engagement reports. Data can also be exported as

JSON and then imported back from JSON at a later time.

Finally, the top button is used to Refresh Current Graph.

https://github.com/BloodHoundAD/BloodHound/wiki/BloodHound-Gallery

39

This is the Settings Dialogue Box. Here you can specify

how you want nodes and labels to be displayed.

Easier to try it out than to explain.

Check it out.

Tip: The Debug Mode will display the query used in the

raw query input box, each time you click somewhere in

the UI.

Really cool for learning Cypher.

This is where a lot of the action happens. As indicated you can search for

nodes. By clicking on the little highway icon, the box will expand and allow

you to insert an End Node and request Paths. Clicking on the Filter icon will

let you enable/disable Edges for all your shortestPath queries .

You could for example decide to disable ACL Edges and not show any path

with these. [/! \ do not forget to turn them back on when needed...]

Finally, clicking on the icon in the left corner will as smoothly expand into

some essential tabs. See below for details

This first tab is the Database Info Tab.

Quite self-explanatory.

The place to remove all sessions if needed (for

example when looping session collection)

@CptJesus has put several warnings to prevent you

from doing so by accident, but this is also where you

can clear the database.

40

The second tab is the Node Info Tab.

Here you will find all the info you need per type of

node.

You can add notes to a node as you progress in your

engagements if needed. You can even store

tdsffotiput!jg!offefeȩ

Clicking on any node in the graph will automatically

open this tab for that node.

Clicking on a count will display the matching Graph.

The last tab is the Query Tab.

Here you will find all the build -in Cypher queries,

and you can also add your favorite custom Queries

to the interface. For more info see E.1

Right-clicking on a Node will open the Node Context Menu will all the

good stuff. Also quite self-explanatory.

Try them all.

41

Right-clicking on an empty space in the graph will bring up the Graph

Option Context Menu.

Here you can add Nodes and Edges.

You will also find some options from side bar repeated.

Right-Clicking on an Edge, will open the Edge Context Menu and allow

you to get info on that type of edge, or remove it if you need to.

Next, at the bottom of the screen is the Raw Query input box.

This is where the magic happens. Here you can input Cypher. This is where you ask questions to

the DB /!Npsf!po!uijt!jo!uif!sftu!pg!uijt!hvjefȩ

Keyboard Shortcuts

On top of all these features, here is a list of keyboard shortcuts ADquKftvt!ibt!ijeefo!jo!uifsfȩ

Key Action

[SPACE] Node Seach

[CTRL] Node Names ON/OFF

[CTRL+SHIFT+I] Dev Console / Debug

[CTRL+R] Restart Bloodhound

42

C ȝ Data Collection & Ingestion

Bloodhound data is collected by various LDAP queries and Win32 API calls. Originally written in pure

PowerShell by @harmj0y [and based on PowerView commands], the whole data collector has been

rewritten in C# by @CptJesus and offers much improvement with regards to speed and stability.

As a true security professional, you are of course interest ed in how exactly this data is collected before

running it in your environment. Np, @CptJesus has got your back. Check it out. (MANDATORY READ)

C.1 ȝ Data Collection

The latest version of BloodHound come with two flavors of the Collector: Sharphound.exe, a C#

executable, and SharpHound.ps1 (Invoke-Bloodhound), its matching PowerShell script containing a

Base64 encoded version of SharpHound to be executed against the targeted AD.

Both have various switches to specify what info is to be collected.

Both tools come with Help Pagesȩ!SUGN/!Invoke-BloodHound code can be found here.

Note: Running the collector should have little to no impact on a healthy AD environment. Only a few LDAP

and API calls to the DC are enough to collect this data. If you manage to bring your AD down with

CmppeIpvoe!ebub!dpmmfdujpo-!tfdvsjuz!jt!opu!uif!pomz!dpodfso!zpv!tipvme!ibwfȩ

For more info on all the various switches, check this post by @CptJesus [MANDATORY READ]

Finally, If you are interested in a Python collector, check out this work by @_dirkjan.

Note: If the machine you are running the collector from is not domain joined, you can use the good old

runas /netonly to do the trick.

Note: Performance might become an issue when querying very large datasets. When dealing with such

AD environments, it could be recommended to collect each domain in a separate database to improve

performance.

https://github.com/PowerShellMafia/PowerSploit/blob/master/Recon/PowerView.ps1
https://blog.cptjesus.com/posts/sharphoundtechnical
https://github.com/BloodHoundAD/BloodHound/blob/master/Ingestors/SharpHound.ps1
https://blog.cptjesus.com/posts/newbloodhoundingestor
https://github.com/fox-it/BloodHound.py
https://twitter.com/_dirkjan

43

C.2 ȝ Data Ingestion

Running the collector will output a zip file containing several JSON files with all the collected data.

Ingesting data can be done by simply dragging this zip into the graph area of the UI, or by clicking on the

upload icon as seen in previous section.

C.3 ȝ Sample Database

BloodHound used to come with a Sample Database for practice. However, this sample database has not

been updated since the initial release of the tool and cannot be used with the latest versions.

Gps!qsbdujdf-!boe!jg!zpv!epoȡu!ibwf!bo!BE!bu!iboe!up!dpmmfdu!ebub!gspn-!zpv!dbo!vtf!this dummy dataset

created for training purposes.

To set it up, simply unzip it, drop the folder in

[somewhere] \neo4j\neo4j-community -X.X.X\data\databases\

and adjust the name of the DB in the neo4j config file located at

[somewhere] \neo4j\neo4j-community -X.X.X\conf\neo4j.conf

Should look something like this:

Th e name of the database to mount
dbms.active_database= DataBaseNameGoesHere

Note: This data is fake and does not reflect any real AD infrastructure .

It was (pseudo-randomly) generated for practice only.

Some of the Edges between Node would most probably not make much sense in a real AD environment,

boe!ipqfgvmmz!zpvs!pxo!BE!epftoȡu!mppl!bt!cbe!bt!uijt!pofȩ

If you want to generate some fake data, @CptJesus also has a tool for that right here .

https://www.ernw.de/download/BloodHoundWorkshop/sample.graph.db.zip
https://github.com/BloodHoundAD/BloodHound-Tools

44

D - Basic Cypher & Common Queries

Ok, so by now you should be comfortable with the basic bloodhound concepts and ready to dig into the

core of it: Cypher.

Cypher is the Neo4j database query language. It works a bit like Lego and is quite graphic. The creators of

neo4j describe it as a mix of SQL Queries and ASCII artȩ!In this section, we will introduce some basic

cypher query building blocks, and see how they apply to Bloodhound.

For a quick reference on Cypher language click here/!!\Ujq;!cpplnbsl!gps!gvuvsf!vtfȩ^

A full guide to neo4j Cypher can also be found here if you want to dig deeper.

D.1 ȝ Neo4j Cypher 101

Dzqifs!jt!b!wfsz!ȣwjtvbmȤ!mbohvbhf/!Ju!xbt!eftjhofe!xjui!BTDJJ!bsu!jo!njoe/!Xip!epftoȡu!mpwf!BTDJJ!bsuȩ!!

A simplified cypher query could look like this:

(This)-[IsConnectedTo]->(That)

This and That are Nodes. IsConnectedTo is the Edge between them, but this is not what I want to highlight

here.

The important parts are the brackets and arrow (the ASCII art). This is your basic Path query construct.

Juȡt!b!cju!dpogvtjoh!bu!gjstu-!cvu!zpv!xjmm!hfu!vtfe!up!ju!wfsz!rvjdlmz/

Opx!mfuȡt!mppl!bu!tpnf!sfbm!rvfsz!tzoubyȩ

In cypher, your two basic instructions will be MATCH and RETURN.

MATCH will instruct neo4j what to look for.

RETURN indicates what results you want to see.

returns all Nodes in the database

https://en.wikipedia.org/wiki/Cypher_Query_Language
https://neo4j.com/docs/cypher-refcard/current/
https://neo4j.com/docs/developer-manual/current/cypher/

45

returns all User s in the database

returns only the name property of all Groups

Opuf;!Uif!uzqf!pg!opef!jt!dbmmfe!b!ȣLabelȤ!jo!uif!pggjdjbm!ofp5k!wpdbcvmbsz/!

Opx!xf!dbo!nblf!uijoht!b!cju!npsf!joufsftujoh/!Mfuȡt!sfuvso!bmm!vtfst!nfncfs!pg!b!tqfdjgjd!hspvq;

Here we first ask for all users and store it in a variable U, then for a group called

ȣBENJOJTUSBUPSTAEPNBJO/MPDBMȤ!boe!xf!tupsf!ju!jo!b!wbsjbcmf!H/!

From that list of users U, we filter who is member of the specified group G, and finally return these User

nodes.

This query can also be written with the following equivalent syntaxes:

46

Note: Cypher language is case-sensitive, Proper casing of Nodes properties, Labels and other syntax

elements jt!uif!gjstu!uijoh!up!difdl!xifo!efcvhhjoh!ibohjoh!rvfsjftȩ!

(Do not worry about the warning icons for nox-!npsf!po!uijt!mbufsȩ*

Things will get more complicated as we dig deeper, but for now, if you understood the above syntaxes, you

bsf!hppe!up!hp/!Bmm!hppe@!Dppm/!Tp!mfuȡt!ejh!effqfsȩ

Note: Cypher queries in this guide cannot be copy-pasted. This was done on purpose. The idea is that you

type them so as to get the hang of it. Sorry. ;)

D.2 ȝ Common BloodHound Queries

D.2.1 ȝ Querying Nodes

Returns Computer nodes with name 'ThisComputerName'

Returns Computer nodes where the domain property is equal to 'ThisDomain'

Same as previous using the WHERE clause

The WHERE clause is used to filter Nodes per property. It is used in combination with Comparison

Pqfsbupst/!Jo!dbtf!pg!ȣJt!Frvbm!UpȤ!dpnqbsjtpo-!uif!tipsufs!dpotusvdu!)ȣNbqȤ*!jt!qsfgfssfe/

47

Node by Property - Property Exists

Returns all N odes that have a property 'ThisProperty' (value or not)

Node by Property - Does Not Exists

Returns all Users uibu!epoȡu!ibwf!b!qspqfsuz!dbmmfe!(UijtQspqfsuz(

Node by Property - Property Value

Returns all Users that have a property 'ThisProperty' with value 'ThisValue'

Returns All Groups with 'KeyWord' in name property (case sensitive)

Same as previous example but using RegEx [(?i) = case insensitive]

48

Comparison Operators

List of operators that can be used with t he WHERE clause:

OPERATOR SYNTAX

Is Equal To =

Is Not Equal To <>

Is Less Than <

Is Greater Than >

Is Less or Equal <=

Is Greater or Equal >=

Is Null IS NULL

Is Not Null IS NOT NULL

Prefix Search* STARTS WITH

Suffix Search* ENDS WITH

Inclusion Search* CONTAINS

RegEx* =~

* String specific

D.2.2 ȝ Querying Edges

Group Membership ȝ Direct

Group Membership ȝ Max Degree 3

49

Group Membership ȝ Any Degree

Note: Here we return paths to visualize nested groups in BloodHound. If you want to return just the User

Nodes you can replace m by U in the RETURN clause of the queries.

D.2.3 ȝ Querying Paths

Shortest Path from A to B - any Edge type / One or more hops

Shortest Path from A to B - specific Edge types / One or more hops

50

Shortest Path Any to One ȝ Specific Edge type / Max hop count

All user, max 3 degrees away by group membership, admin to specified target computer

Shortest Path Any to Any

Shortest paths from any user to any group

/! \ Any-to-Any are heavy queries and might hang with large datasets

All Shortest Paths

The allShortestPaths() function works the same way as shortestPath() but returns all possible shortest

paths [= more ways to get to target with same amount of hops]

/! \ Might need to restrict Edge type/max hops for heavy queries

