Blog: **NSINUATOR.**NET Conference: **TROOPERS.**de

IPv6 Capabilities of Commercial Security Components

Enno Rey, erey@ernw.de Christopher Werny, cwerny@ernw.de Stefan Schwalb, sschwalb@ernw.de

Preliminary Notes

- We (as ERNW) do not sell any devices.
 We don't have any vendor affiliations.
 - We don't have any interest in promoting (or bashing) any vendor.
- We just want to contribute to an understanding "what works & what doesn't" as of _today_ (Jul2013).
 - "Contribute" means: this is by no means comprehensive as for vendor space or testing approaches.

Disclaimer II

All this is work in progress.

- Noted the v0_9 in the filename?
- \neg We have a lab.
- At least one ERNW student continuously works on this stuff
 - Currently, that's Stefan ;-)
- Still, we're not where we would like to be.
- You can join us ;-)
 - "Open lab day" on Nov 07, together with Antonios Atlasis.

Disclaimer III

We love to share.

Electronic name badge of TROOPERS13.

We're hosting the beautiful TROOPERS.de Conference & Workshop series!

- Next: March 17-21. 2014, Heidelberg, DE
- More info: See last slide.

This could be your badge ;-)

Visit our blog *Insinuator*.NET
 & join the discussion!

Related Work

- What Marc did for German c't magazine recently and subsequently discussed at the *IPv6 Kongress*, together w/ Fernando
 - http://www.si6networks.com/presentations/ ipv6kongress/mhfg-ipv6-kongress-ipv6security-assessment.pdf
- Johannes' great master thesis.
 - http://blog.webernetz.net/2013/05/06/ipv6security-master-thesis/
 - Covered
 - Cisco ASA, Juniper SSG, Palo Alto PA
 - Strong focus on various attacks.

Problem Statement

Firewall components that support IPv6

🍞 Printer Friendly 🛛 🚖 Rate this Page

Technical Articles ID: KB69266

Last Modified: December 17, 2012

Summary

The table below shows the firewall components that support IPv6.

	Supports IPv6	Does not support IPv6
Administrative services	None	Admin Console SF Administration Console SSH Telnet
Applications	All other applications	For IPv6, use a generic application on the appropriate port(s) instead of these applications: • Telnet • RealMedia • SOCKS • Sun RPC • SIP • Oracle • SH • Oracle • SSH • Citrix-ICA • T120 • SMTP • SNMP • DNS • H.323 • Iiop • MSSQL • Citrix Browser • rlogin

What You Might Be Interested In

Relevant Capabilities

- (Security) Feature Parity

- Robustness & Performance of IPv6 stack/general processing
- Support of IPv6 specific capabilities
 - Security related
 - Filtering of extension headers
 - Handling of fragments
 - Other
- "Compliance" w/ some "standard"

(Security) Feature Parity

Simply said:

- Does \$COMPONENT provide the same security functions – and hence, ideally, the same security benefit – for IPv6 (network traffic) as for IPv4? e.g.
 - Simple filtering (stateless/stateful, L3+4)
 - Advanced filtering (OSI layer 4 & above)
 - High availability
 - VPN is a whole own story, we didn't look at that.
 - Isn't IPSec part of the IPv6 stack anyway? ;-]]]

Robustness & Performance

 Does \$COMPONENT provide the same processing/throughput for IPv6 (network traffic) as for IPv4?

Support of IPv6 Specific Capabilities

Filtering of/based on

- Extension headers
- Extension headers + fragmentation
- Handling of fragmentation
 - In particular in the IPS space.
- "Support" of PMTUD on stateful devices
 - Can they associate ICMP too big with some TCP flow already in state table?

"Compliance" with \$SOME_STANDARD

- Where \$SOME_STANDARD could be

- RIPE 554, sect. on "network security equipment"
- DoD Profile for IPv6 Capable Products
 - http://jitc.fhu.disa.mil/apl/ipv6/pdf/disr_ipv6_product_profile_v3.pdf
 - Is obsolete, was replaced by UC APL
 - <u>https://aplits.disa.mil/processAPList.do?group=Security</u>

To Answer these Questions You Could

Look for publicly available sources & testing reports

- Pay close attention to dates then!
- Often not very detailed information available (see next slides)
- Ask the vendor
 - With a grain of salt, of course.
- Ask industry peers
 - We might help you with finding somebody who already has \$COMPONENT in (IPv6) use.
- Mailing lists

Types of Tests Performed in Lab

Firewalls

- General capabilities

- Can IPv6 be configured on \$DEVICE?

Throughput

- In particular compared with IPv4.
- Some application layer filtering testing (focus performance), e.g. FTP
- Some general "IPv6 attack resistance" testing
 - RA/NS flooding et.al.
- Management
 - Vendor specific (Check Point!)
 - Syslog, SNMP, NTP etc.

We Did Not

Any of those semi-formal test methodologies

 <u>http://jitc.fhu.disa.mil/adv_ip/register/</u> <u>docs/ipv6v4_may09.pdf</u>

Tests Performed

IPS

- General capabilities / function

Some performance testing

Firewall Testbed

- Cisco ASA 5505

- Running 8.4(5) Image

- CP Gaia R76 on HP DL360 G4

 Released in February 2013 and claims to have extended IPv6 support ;)

Juniper SSG-5Running 6.3r13 Image

Throughput Testing

Some Details

- Step 1:

- Generate rule set for IPv4 and IPv6 with approx.
 1000 Rules each (to simulate production environments)
 - Fortunately, this could be realized with a short custom written script ;)

- Step 2:

- IPv4 throughput testing (using Iperf 2.0.5) to establish a baseline
- Place permitting rule on line 1, 500 and 1000 in the rule set
- Run each test five times and calculate the average throughput

Throughput Testing

Some Details

- Step 3:

- Repeat Step 2 with IPv6
 - Fortunately Iperf supports IPv6 since 2010 ;)
- Step 4:
 - Throughput test with FTP and application inspection enabled.
 - Copying a 1.5 Gigabyte file to the FTP Server
 - Both for IPv4 and IPv6

"IPv6 attack resistance"

- For these tests we used the THC-IPv6 tool suite (v2.1) and the IPv6 Toolkit from SI6 Networks
 - flood_router26 module to see how the firewalls coped with an excessive amount of RA's
 - scan6 module to see how the firewalls behave when sending out a lot of neighbor solicitations for address resolution of non-existing addresses

ASA-Results

General Capabilities

 Well, the ASA supports filtering of IPv6 traffic for quite some time now.

- Alas, in regards to feature parity to IPv4, there are still some gaps to close ;)
 - (Most?) inspects.
 - Management stuff (NTP, SNMP, syslog)

IPv4 Throughput ASA

According to Cisco

- The ASA should be able to push 150Mbit traffic (bi-directional)
- We were able to push approx. 93
 Mbit in one direction
 - Which is nearly the theoretical maximum for the Fast Ethernet interface the ASA has built-in.

C:\Program Files (x86)\iperf>iperf -s

Server listening on TCP port 5001 TCP window size: 64.0 KBvte (default)

[ID] Interval Transfer Bandwidth [4] local 192.168.3.205 port 5001 connected with 192.168.1.2 port 53689 4] 0.0-60.0 sec 668 MBytes 93.4 Mbits/sec 4] local 192.168.3.205 port 5001 connected with 192.168.1.2 port 53690 41 0.0-60.0 sec 668 MBytes 93.4 Mbits/sec 4] local 192.168.3.205 port 5001 connected with 192.168.1.2 port 53691 41 0.0-60.0 sec 669 MBvtes 93.4 Mbits/sec 4] local 192.168.3.205 port 5001 connected with 192.168.1.2 port 53692 41 0.0-60.0 sec 668 MBytes 93.4 Mbits/sec 4] local 192.168.3.205 port 5001 connected with 192.168.1.2 port 53693 4] 0.0-60.0 sec 669 MBytes 93.5 Mbits/sec 4] local 192.168.3.205 port 5001 connected with 192.168.1.2 port 53694 4] 0.0-60.0 sec 669 MBytes 93.5 Mbits/sec 41 local 192.168.3.205 port 5001 connected with 192.168.1.2 port 53696 0.0-60.0 sec 668 MBytes 93.3 Mbits/sec 4] local 192.168.3.205 port 5001 connected with 192.168.1.2 port 53697 4] 0.0-60.0 sec 669 MBytes 93.5 Mbits/sec [4] local 192.168.3.205 port 5001 connected with 192.168.1.2 port 53698 4] 0.0-60.0 sec 668 MBytes 93.4 Mbits/sec 4] local 192.168.3.205 port 5001 connected with 192.168.1.2 port 53699 41 0.0-60.0 sec 669 MBvtes 93.5 Mbits/sec 4] local 192.168.3.205 port 5001 connected with 192.168.1.2 port 53700 4] 0.0-60.0 sec 669 MBytes 93.4 Mbits/sec 4] local 192.168.3.205 port 5001 connected with 192.168.1.2 port 53701 4] 0.0-60.0 sec 669 MBytes 93.4 Mbits/sec 4] local 192.168.3.205 port 5001 connected with 192.168.1.2 port 53702 4] 0.0-60.0 sec 669 MBytes 93.5 Mbits/sec [4] local 192.168.3.205 port 5001 connected with 192.168.1.2 port 53703 4] 0.0-60.0 sec 669 MBytes 93.5 Mbits/sec 4] local 192.168.3.205 port 5001 connected with 192.168.1.2 port 53704 [4] 0.0-60.0 sec 669 MBytes 93.4 Mbits/sec

CPU utilization for 5 seconds = 45%; 1 minute: 41%; 5 minutes: 34%

IPv4 Throughput ASA

No worries, at the end you will see a comprehensive (graphical) summary/comparison ;) C:\Program Files (x86)\iperf≻iperf -s -V

Server listening on TCP port 5001

TCP window size: 64.0 KByte (default)

[ID] Interval Transfer Bandwidth

I	[4] local fdaa:cccc:0:1::205 port 5001 connected with fdaa:aaaa:0:1:4dcc:67d3:5c1c:41dd port 59322
I	[4] 0.0-60.0 sec 630 MBytes 88.0 Mbits/sec
I	[4] local fdaa:cccc:0:1::205 port 5001 connected with fdaa:aaaa:0:1:4dcc:67d3:5c1c:41dd port 59324
I	[4] 0.0-60.0 sec 660 MBytes 92.2 Mbits/sec
I	[4] local fdaa:cccc:0:1::205 port 5001 connected with fdaa:aaaa:0:1:4dcc:67d3:5c1c:41dd port 59325
I	[4] 0.0-60.0 sec 659 MBytes 92.1 Mbits/sec
I	[4] local fdaa:cccc:0:1::205 port 5001 connected with fdaa:aaaa:0:1:4dcc:67d3:5c1c:41dd port 59326
I	[4] 0.0-60.0 sec 660 MBytes 92.2 Mbits/sec
I	[4] local fdaa:cccc:0:1::205 port 5001 connected with fdaa:aaaa:0:1:4dcc:67d3:5c1c:41dd port 59327
I	[4] 0.0-60.0 sec 660 MBytes 92.2 Mbits/sec
I	[4] local fdaa:cccc:0:1::205 port 5001 connected with fdaa:aaaa:0:1:4dcc:67d3:5c1c:41dd port 59328
I	[4] 0.0-60.0 sec 659 MBytes 92.1 Mbits/sec
I	[4] local fdaa:cccc:0:1::205 port 5001 connected with fdaa:aaaa:0:1:4dcc:67d3:5c1c:41dd port 59329
I	[4] 0.0-60.0 sec 660 MBytes 92.2 Mbits/sec
I	[4] local fdaa:cccc:0:1::205 port 5001 connected with fdaa:aaaa:0:1:4dcc:67d3:5c1c:41dd port 59330
I	[4] 0.0-60.0 sec 660 MBytes 92.2 Mbits/sec
I	[4] local fdaa:cccc:0:1::205 port 5001 connected with fdaa:aaaa:0:1:4dcc:67d3:5c1c:41dd port 59331
I	[4] 0.0-60.0 sec 660 MBytes 92.2 Mbits/sec
I	[4] local fdaa:cccc:0:1::205 port 5001 connected with fdaa:aaaa:0:1:4dcc:67d3:5clc:41dd port 59332
I	[4] 0.0-60.0 sec 660 MBytes 92.2 Mbits/sec
I	[4] local fdaa:cccc:0:1::205 port 5001 connected with fdaa:aaaa:0:1:4dcc:67d3:5clc:41dd port 59333
I	[4] 0.0-60.0 sec 660 MBytes 92.2 Mbits/sec
I	[4] local fdaa:cccc:0:1::205 port 5001 connected with fdaa:aaaa:0:1:4dcc:67d3:5clc:41dd port 59334
I	[4] 0.0-60.0 sec 659 MBytes 92.1 Mbits/sec
I	[4] local fdaa:cccc:0:1::205 port 5001 connected with fdaa:aaaa:0:1:4dcc:67d3:5c1c:41dd port 59335
I	[4] 0.0-60.0 sec 660 MBytes 92.2 Mbits/sec
I	[4] local fdaa:cccc:0:1::205 port 5001 connected with fdaa:aaaa:0:1:4dcc:67d3:5c1c:41dd port 59336
I	[4] 0.0-60.0 sec 659 MBytes 92.1 Mbits/sec
	[4] local fdaa:cccc:0:1::205 port 5001 connected with fdaa:aaaa:0:1:4dcc:67d3:5clc:41dd port 59337
I	[4] 0.0-60.0 sec 657 MBytes 91.8 Mbits/sec

CPU utilization for 5 seconds = 48%; 1 minute: 42%; 5 minutes: 38%

IPv6 Throughput ASA

FTP Throughput with Application Inspection

IPv4 in the top IPv6 in the bottom

Conclusion

 Throughput of IPv4 and IPv6 is nearly equivalent.

 Application Layer Inspection for IPv6 does not reduce the throughput of the ASA.

IPv6 - RA flooding

 There were quite some interesting results when we did the testing with the ASA.

 First test was to flood the segment with RAs to see how the ASA behaves.

Results

- CPU Utilization jumps to 100%

- SSH session gets terminated and could be barely reestablished.
- Traffic flowing _through_ the ASA stops completely.
- According to Marc this was/is fully to be expected ;-)

C:\Windows\system32\cmd.exe - ping -t fdaa:cccc:0:1::205		
Reply from fdaa:cccc:0:1::205: Reply from fdaa:cccc:0:1::205: Reply from fdaa:cccc:0:1::205: Reply from fdaa:cccc:0:1::205: Request timed out. Request timed out. Destination host unreachable. Request timed out. Request timed out.	time=1ms time=1ms time=1ms time=1ms	
Request timed out. Reply from fdaa:cccc:0:1::205: Reply from fdaa:cccc:0:1::205: Reply from fdaa:cccc:0:1::205: Reply from fdaa:cccc:0:1::205: Reply from fdaa:cccc:0:1::205: Reply from fdaa:cccc:0:1::205:	time=50ms time=2ms time=1ms time=1ms time=1ms time=1ms	
		E.

asaERNW# show cpu detail

Break down of per-core data path versus control point cpu usage: Core 5 sec 5 min 5 min Core 0 err (0.0 + err) err (0.0 + err) err (0.0 + err)

Current control point elapsed versus the maximum control point elapsed for: 5 seconds = 100.0%; 1 minute: 26.9%; 5 minutes: 6.4%

CPU utilization of external processes for: 5 seconds = 0.0%; 1 minute: 0.0%; 5 minutes: 0.0%

Total CPU utilization for: 5 seconds = err%; 1 minute: err%; 5 minutes: err%

asaERNW# show cp

login as: ernw ernw§fdaa:bbbb:0:1::1's password: Type help or '?' for a list of available commands. asaERNW> en Password: ******** asaERNW# show cpu CPU utilization for 5 seconds = err%; 1 minute: err%; 5 minutes: err% asaERNW#

Some Screenshots

7/31/13 © ERNW GmbH | Carl-Bosch-Str. 4 | D-69115 Heidelberg | www.ernw.de

Address Scanning

- The second test consisted of sending packets to non-existing destinations in the DMZ to force the ASA to perform Neighbor Discovery.
- Performed with the scan6 tool with the following command:
 - ./scan6 -i eth0 -d fdaa:cccc:0:1::1-ffff:1ffff

Results

- CPU Utilization jumps to 100%

- SSH Session was not terminated
- Traffic flowing through the ASA was not affected
 - Well, the latency increased a little, but traffic was not dropped

Reply from fdaa:cccc:0:1::205: time=5ms	PuTTY (inactive)		
Reply from fdaa:cccc:0:1::205: time=3ms	fdaa:cccc:0:1::5:3a62		INCMP inside
Peply from fdaa:cocc:0.1::205: time-5ms	fdaa:cccc:0:1::5:3962		INCMP inside
	fdaa:cccc:0:1::5:3862		INCMP inside
Reply from fdaa:cccc:0:1::205: time=3ms	fdaa:cccc:0:1::5:3762		INCMP inside
Reply from fdaa:cccc:0:1::205: time=8ms	fdaa:cccc:0:1::5:3662		INCMP inside
	fdaa:cccc:0:1::5:3562		INCMP inside
Kebia ilom idaa cocc. 8 i. 505 fime-ome	fdaa:cccc:0:1::5:3462		INCMP inside
Reply from fdaa:cccc:0:1::205: time=6ms	fdaa:cccc:0:1::5:3362		INCMP inside
Replý from fdaa:cccc:0:1::205: time=4ms	fdaa:cccc:0:1::5:3262		INCMP inside
	Idaa:cccc:U:1::5:3162		INCMP inside
Kebiλ ilow idaa:cccc:ñ:i::5ñ5: fiwe=5we	Idaa:cccc:0:1::5:3062		INCMP inside
Reply from fdaa:cccc:0:1::205: time=3ms	fdaa:cccc:0:1::5:2162		INCMP inside
Replý from fdaa:cccc:0:1::205: time=7ms	fdaa:cccc:0:1::5:2d62		INCMP inside
	fdaa:cccc:0:1::5:2c62		INCMP inside
Kebia ilom idaa:cccc.a.i::505: fime=3me	fdaa:cccc:0:1::5:2b62		INCMP inside
Reply from fdaa:cccc:0:1::205: time=4ms	fdaa:cccc:0:1::5:2a62		INCMP inside
Reply from fdaa:cccc:0:1::205: time=3ms	fdaa:cccc:0:1::5:2962		INCMP inside
	fdaa:cccc:0:1::5:2862		INCMP inside
Kebia ilow idaa:cccc.5:i::565: fiwe=iwe	fdaa:cccc:0:1::5:2762		INCMP inside
Reply from fdaa:cccc:0:1::205: time=4ms	fdaa:cccc:0:1::5:2662		INCMP inside
Peply from fdaa:cocc:0.1.205. time-4me	fdaa:cccc:0:1::5:2562		INCMP inside
	fdaa:cccc:0:1::5:2462		INCMP inside
Reply from fdaa:cccc:0:1::205: time=4ms	fdaa:cccc:0:1::5:2362		INCMP inside
Reply from fdaa:cccc:0:1::205: time=7ms	Idaa:cccc:0:1::5:2262		INCMP inside
Peply from fdaa:cocc:0:1::205; time-3ms	Idaa:CCCC:U:1::5:2162		INCMP inside
Repry 110m 1daa.cccc.0.1205. time-Sms	100000000000000000000000000000000000000	1 -	INCMP INSIDE

Break down	of per-core	data path versus	control point	cpu usage:
Core	5 sec	1 min	5 min	
Core O	err (0.0 +	err) err (0.0 +	err) err (0.	0 + err)

```
Current control point elapsed versus the maximum control point elapsed for:
5 seconds = 100.0%; 1 minute: 38.2%; 5 minutes: 22.6%
```

```
CPU utilization of external processes for:
5 seconds = 0.0%; 1 minute: 0.0%; 5 minutes: 0.0%
```

Total CPU utilization for: 5 seconds = err%; 1 minute: err%; 5 minutes: err%

Various Screenshots

Management Protocols

 SSH/HTTPS access works like a charm.

- Syslog not supported over IPv6
 - Even in the next Major Release Version
 (9.0) still not supported
- SNMP not supported over IPv6
 - See above

Management Protocols

- Failover is supported over IPv6 and in the meantime "matured".
 - Initial support was introduced in 8.2.2 but there were some "teething problems" in the beginning.
- OSPFv3 support was introduced in 9.0.1
 - But we haven't tested it yet

Checkpoint-Results Check Point SOFTWARE TECHNOLOGIES LTD.

General Capabilities

- Well, the Checkpoint supports filtering of IPv6 traffic for some releases
 - But in the early versions there were huge limitations (installation of additional packages etc.)
- R76 added quite a bit of IPv6 enhancements in regards to management and policy rule base.
- Of course, in regards to feature parity to IPv4, there are still some gaps to close ;)

IPv4 Throughput CP

- As we were using commodity hardware, there were no official specs from Checkpoint
- We were able to push approx. 94
 Mbit in one direction
 - Which is nearly the theoretical maximum as the Checkpoint was connected to an Fast Ethernet Switch.

C:\Program Files (x86)\iperf>iperf -s Server listening on TCP port 5001 TCP window size: 64.0 KByte (default) [4] local 192.168.3.205 port 5001 connected with 192.168.1.2 port 56049 [ID] Interval Transfer Bandwidth [4] local 192.168.3.205 port 5001 connected with 192.168.1.2 port 56054 [4] 0.0-60.0 sec 672 MBvtes 93.8 Mbits/sec [4] local 192.168.3.205 port 5001 connected with 192.168.1.2 port 56055 [4] 0.0-60.0 sec 672 MBytes 93.8 Mbits/sec [4] local 192.168.3.205 port 5001 connected with 192.168.1.2 port 56056 [4] 0.0-60.0 sec 672 MBytes 93.9 Mbits/sec [4] local 192.168.3.205 port 5001 connected with 192.168.1.2 port 56057 [4] 0.0-60.0 sec 672 MBytes 93.9 Mbits/sec [4] local 192.168.3.205 port 5001 connected with 192.168.1.2 port 56058 [4] 0.0-60.0 sec 672 MBytes 93.9 Mbits/sec [4] local 192.168.3.205 port 5001 connected with 192.168.1.2 port 56059 [4] 0.0-60.0 sec 671 MBvtes 93.7 Mbits/sec [4] local 192.168.3.205 port 5001 connected with 192.168.1.2 port 56060 [4] 0.0-60.0 sec 672 MBytes 93.9 Mbits/sec [4] local 192.168.3.205 port 5001 connected with 192.168.1.2 port 56061 [4] 0.0-60.0 sec 672 MBytes 93.9 Mbits/sec [4] local 192.168.3.205 port 5001 connected with 192.168.1.2 port 56062 [4] 0.0-60.0 sec 671 MBytes 93.8 Mbits/sec [4] local 192.168.3.205 port 5001 connected with 192.168.1.2 port 56063 [4] 0.0-60.0 sec 672 MBvtes 93.8 Mbits/sec [4] local 192.168.3.205 port 5001 connected with 192.168.1.2 port 56064 [4] 0.0-60.0 sec 672 MBytes 93.8 Mbits/sec [4] local 192.168.3.205 port 5001 connected with 192.168.1.2 port 56065 [4] 0.0-60.0 sec 672 MBytes 93.9 Mbits/sec [4] local 192.168.3.205 port 5001 connected with 192.168.1.2 port 56066 41 0.0-60.0 sec 672 MBvtes 93.9 Mbits/sec [4] local 192.168.3.205 port 5001 connected with 192.168.1.2 port 56067 [4] 0.0-60.0 sec 672 MBytes 93.9 Mbits/sec [4] local 192.168.3.205 port 5001 connected with 192.168.1.2 port 56068 [4] 0.0-60.0 sec 672 MBytes 93.9 Mbits/sec

IPv4 Throughput CP

C:\Program Files (x86)\iperf>iperf -s -V

Server listening on TCP port 5001 TCP window size: 64.0 KByte (default)

[4]	local fdaa:cccc:0:1::	:205 port 5001	connected	with	fdaa:aaaa:0:1:51e9:6968:1025:7e71	port	44924
[ID]	Interval Transf	fer Bandwi	dth				
C	4]	0.0-60.0 sec 606 M	MBytes 84.6 M	bits/sec				
[4]	local fdaa:cccc:0:1::	:205 port 5001	connected	with	fdaa:aaaa:0:1:51e9:6968:1025:7e71	port	44925
[4]	0.0-60.0 sec 496 M	MBytes 68.4 M	bits/sec				
[4]	local fdaa:cccc:0:1::	:205 port 5001	connected	with	fdaa:aaaa:0:1:51e9:6968:1025:7e71	port	44926
[4]	0.0-60.0 sec 538 M	MBytes 75.2 M	bits/sec				
[4]	local fdaa:cccc:0:1::	:205 port 5001	connected	with	fdaa:aaaa:0:1:51e9:6968:1025:7e71	port	44927
[4]	0.0-60.0 sec 583 M	MBytes 81.5 M	bits/sec				
[4]	local fdaa:cccc:0:1::	:205 port 5001	connected	with	fdaa:aaaa:0:1:51e9:6968:1025:7e71	port	44928
[4]	0.0-60.0 sec 527 M	MBytes 73.7 M	bits/sec				
[4]	local fdaa:cccc:0:1::	:205 port 5001	connected	with	fdaa:aaaa:0:1:51e9:6968:1025:7e71	port	44929
[4]	0.0-60.0 sec 557 M	MBytes 77.9 M	bits/sec				
C	4]	local fdaa:cccc:0:1::	:205 port 5001	connected	with	fdaa:aaaa:0:1:51e9:6968:1025:7e71	port	44930
C	4]	0.0-60.0 sec 504 M	MBytes 70.4 M	bits/sec				
[4]	local fdaa:cccc:0:1::	:205 port 5001	connected	with	fdaa:aaaa:0:1:51e9:6968:1025:7e71	port	44931
[4]	0.0-59.9 sec 614 M	MBytes 86.0 M	bits/sec				
C	4]	local fdaa:cccc:0:1::	:205 port 5001	connected	with	fdaa:aaaa:0:1:51e9:6968:1025:7e71	port	44932
C	4]	0.0-60.0 sec 536 M	MBytes 75.0 M	bits/sec				
C	4]	local fdaa:cccc:0:1::	:205 port 5001	connected	with	fdaa:aaaa:0:1:51e9:6968:1025:7e71	port	44933
C	4]	0.0-60.0 sec 530 M	MBytes 74.1 M	bits/sec				
C	4]	local fdaa:cccc:0:1::	:205 port 5001	connected	with	fdaa:aaaa:0:1:51e9:6968:1025:7e71	port	44934
[4]	0.0-60.1 sec 612 M	MBytes 85.5 M	bits/sec				
[4]	local fdaa:cccc:0:1::	:205 port 5001	connected	with	fdaa:aaaa:0:1:51e9:6968:1025:7e71	port	44935
I	4]	0.0-60.0 sec 532 M	MBytes 74.3 M	bits/sec				
C	4]	local fdaa:cccc:0:1::	:205 port 5001	connected	with	fdaa:aaaa:0:1:51e9:6968:1025:7e71	port	44936
C	4]	0.0-61.4 sec 566 M	MBytes 77.2 M	bits/sec				
[4]	local fdaa:cccc:0:1::	:205 port 5001	connected	with	fdaa:aaaa:0:1:51e9:6968:1025:7e71	port	44937
[4]	0.0-60.0 sec 604 M	MBytes 84.4 M	bits/sec				
[4]	local fdaa:cccc:0:1:	:205 port 5001	connected	with	fdaa:aaaa:0:1:51e9:6968:1025:7e71	port	44938
[4]	0.0-60.0 sec 536 M	MBytes 75.0 M	bits/sec				

IPv6 Throughput CP

FTP Throughput with Application Inspection

IPv4 in the top IPv6 in the bottom

Throughput difference IPv4 vs. IPv6 - Checkpoint

Interim Conclusion

 Even with the tested (quite new) release, there are some performance differences between IPv4 und IPv6.

- There seems to be a problem with Checkpoint and FTP traffic over IPv6
 - We couldn't find a plausible explanation
 - But some of our customers reported similar problems.

Further Throughput Tests

- As the HP Server has a Gigabit Ethernet card we did the throughput tests again with a Gigabit Switch between "them".
 - Cisco 4948E (to avoid potential interface buffer issues)

Final Conclusion

 It seems that the Checkpoint has some problems with FTP and IPv6.

- The difference in throughput can be quite huge.
 - Up to 40%

- There needs some work to be done.

IPv6 - RA flooding

 As with the ASA, the first test was to flood the segment with RAs to see how the CP behaves.

Results

- The results looked kind of better than on the ASA ;)
 - But this could be because the Checkpoint has more CPU Power than the ASA
- CPU Utilization went to ~50%

- All Management Sessions were kept alive.
- Throughput of traffic flowing _through_ the Checkpoint dropped quite heavily.

Some Screenshots;)

7/31/13 © ERNW GmbH | Carl-Bosch-Str. 4 | D-69115 Heidelberg | www.ernw.de

Address Scanning

- The second test consisted of sending packets to non-existing destinations in the DMZ to force the CP to perform Neighbor Discovery
- Performed with the scan6 tool with the following command:
 - ./scan6 -i eth0 -d fdaa:cccc:0:1::1-ffff:1ffff

Results

- We made some weird observation:
- Even though we sent out a lot of ICMPv6 Echo Requests to non existing IPv6 addresses
- No incomplete entries could be found on the Check Point
- We assume that the checkpoint only insert an entry if ND is successful

Management Protocols

SSH/HTTPS access works like a charm

- Communication between the SmartConsole and the Security Gateway works reliably over IPv6.
- Syslog not supported over IPv6.
- SNMP not supported over IPv6.
- NTP not supported over IPv6.

Management Protocols

- ClusterXL is supported over IPv6

- VRRPv3 and OSPFv3 are supported since R76
 - But we haven't fully tested them.
 - At least the OSPFv3 adjacency between Cisco Router and the Checkpoint came up.

Juniper-SSG Results

General Capabilities

 ScreenOS 6.3r13 supports the filtering the of IPv6 traffic

 With regard to feature parity to IPv4, there are still some gaps to close ;)

IPv4 Throughput Juniper

- According to Juniper, the SSG5 can push up to 160 Mbit of traffic
- We were able to push approx. 90
 Mbit in one direction
 - Which is nearly the theoretical maximum as the Juniper has only a Fast Ethernet interface.

Server listening on TCP port 5001 TCP window size: 64.0 KByte (default)

4]	local 192.168.3.205	port 5001 connected with 192.168.1.2 port 57224
ID]	Interval Trans	sfer Bandwidth
4]	0.0-60.0 sec 627	MBytes 87.6 Mbits/sec
4]	local 192.168.3.205	port 5001 connected with 192.168.1.2 port 57227
4]	0.0-60.0 sec 659	MBytes 92.1 Mbits/sec
4]	local 192.168.3.205	port 5001 connected with 192.168.1.2 port 57228
4]	0.0-60.0 sec 664	MBytes 92.7 Mbits/sec
4]	local 192.168.3.205	port 5001 connected with 192.168.1.2 port 57229
4]	0.0-60.0 sec 667	MBytes 93.2 Mbits/sec
4]	local 192.168.3.205	port 5001 connected with 192.168.1.2 port 57230
4]	0.0-60.0 sec 663	MBytes 92.6 Mbits/sec
4]	local 192.168.3.205	port 5001 connected with 192.168.1.2 port 57244
4]	0.0-60.1 sec 614	MBytes 85.7 Mbits/sec
4]	local 192.168.3.205	port 5001 connected with 192.168.1.2 port 57245
4]	0.0-60.0 sec 664	MBytes 92.7 Mbits/sec
4]	local 192.168.3.205	port 5001 connected with 192.168.1.2 port 57246
4]	0.0-60.0 sec 639	MBytes 89.3 Mbits/sec
4]	local 192.168.3.205	port 5001 connected with 192.168.1.2 port 57247
4]	0.0-60.0 sec 633	MBytes 88.4 Mbits/sec
4]	local 192.168.3.205	port 5001 connected with 192.168.1.2 port 57248
4]	0.0-60.0 sec 645	MBytes 90.2 Mbits/sec
4]	local 192.168.3.205	port 5001 connected with 192.168.1.2 port 57264
4]	0.0-60.0 sec 668	MBytes 93.3 Mbits/sec
4]	local 192.168.3.205	port 5001 connected with 192.168.1.2 port 57265
4]	0.0-60.0 sec 646	MBytes 90.3 Mbits/sec
4]	local 192.168.3.205	port 5001 connected with 192.168.1.2 port 57266
4]	0.0-60.1 sec 630	MBytes 87.9 Mbits/sec
4]	local 192.168.3.205	port 5001 connected with 192.168.1.2 port 57267
4]	0.0-60.0 sec 614	MBytes 85.8 Mbits/sec
4]	local 192.168.3.205	port 5001 connected with 192.168.1.2 port 57268
41	0.0-60.0 sec 661	MBytes 92.4 Mbits/sec

IPv4 Throughput SSG

Server listening on TCP port 5001 TCP window size: 64.0 KByte (default) 4] local fdaa:cccc:0:1::205 port 5001 connected with fdaa:aaaa:0:1:51e9:6968:1025:7e71 port 45956 [ID] Interval Transfer Bandwidth 41 0.0-60.0 sec 636 MBvtes 88.8 Mbits/sec 4] local fdaa:cccc:0:1::205 port 5001 connected with fdaa:aaaa:0:1:51e9:6968:1025:7e71 port 45961 4] 0.0-60.0 sec 637 MBytes 89.0 Mbits/sec 4] local fdaa:cccc:0:1::205 port 5001 connected with fdaa:aaaa:0:1:51e9:6968:1025:7e71 port 45962 4] 0.0-60.0 sec 634 MBytes 88.6 Mbits/sec 4] local fdaa;cccc:0:1::205 port 5001 connected with fdaa;aaaa:0:1:51e9:6968:1025:7e71 port 45963 4] 0.0-60.0 sec 632 MBytes 88.4 Mbits/sec 4] local fdaa:cccc:0:1::205 port 5001 connected with fdaa:aaaa:0:1:51e9:6968:1025:7e71 port 45964 4] 0.0-60.0 sec 633 MBytes 88.4 Mbits/sec 4] local fdaa:cccc:0:1::205 port 5001 connected with fdaa:aaaa:0:1:51e9:6968:1025:7e71 port 45978 41 0.0-60.0 sec 637 MBvtes 89.0 Mbits/sec 4] local fdaa:cccc:0:1::205 port 5001 connected with fdaa:aaaa:0:1:51e9:6968:1025:7e71 port 45979 41 0.0-60.0 sec 635 MBytes 88.7 Mbits/sec 4] local fdaa:cccc:0:1::205 port 5001 connected with fdaa:aaaa:0:1:51e9:6968:1025:7e71 port 45980 4] 0.0-60.0 sec 636 MBytes 88.9 Mbits/sec 4] local fdaa:cccc:0:1::205 port 5001 connected with fdaa:aaaa:0:1:51e9:6968:1025:7e71 port 45981 4] 0.0-60.0 sec 634 MBytes 88.7 Mbits/sec 4] local fdaa:cccc:0:1::205 port 5001 connected with fdaa:aaaa:0:1:51e9:6968:1025:7e71 port 45982 4] 0.0-60.0 sec 632 MBytes 88.2 Mbits/sec 4] local fdaa:cccc:0:1::205 port 5001 connected with fdaa:aaaa:0:1:51e9:6968:1025:7e71 port 45989 0.0-60.0 sec 632 MBvtes 88.3 Mbits/sec 4] local fdaa:cccc:0:1::205 port 5001 connected with fdaa:aaaa:0:1:51e9:6968:1025:7e71 port 45990 0.0-60.0 sec 638 MBvtes 89.2 Mbits/sec 41 4] local fdaa:cccc:0:1::205 port 5001 connected with fdaa:aaaa:0:1:51e9:6968:1025:7e71 port 45991 4] 0.0-60.0 sec 632 MBytes 88.3 Mbits/sec 4] local fdaa:cccc:0:1::205 port 5001 connected with fdaa:aaaa:0:1:51e9:6968:1025:7e71 port 45992 4] 0.0-60.0 sec 636 MBytes 88.9 Mbits/sec 4] local fdaa;cccc:0:1::205 port 5001 connected with fdaa;aaaa:0:1:51e9:6968:1025:7e71 port 45993 41 0.0-60.0 sec 631 MBvtes 88.2 Mbits/sec

IPv6 Throughput SSG

FTP Throughput with Application Inspection

IPv4 in the top IPv6 in the bottom

Bandwidth in Mbits/sec IPv4 ■IPv6 Summary

Throughput difference IPv4 vs. IPv6 - Juniper

7/31/13 © ERNW GmbH | Carl-Bosch-Str. 4 | D-69115 Heidelberg | www.ernw.de

#60 www.ernw.de

Conclusion

Throughput of IPv4 and IPv6 is nearly equivalent.

 Application Layer Inspection for IPv6 does not reduce the throughput of the Juniper.

IPv6 - RA flooding

 As with the ASA and Check Point, the first test was to flood the segment with RAs to see how the Juniper behaves.

Results

- The results looked kind of better than on the ASA ;)
- CPU Utilization went "only" to ~70%
 - Which is way better for a such a small device than 50% on 4 Core Xeon ;)

- All Management Sessions were kept alive.
- Throughput of traffic flowing _through_ the Juniper dropped quite heavily.

C:\Windows\system32\cmd.exe		_ 🗆 🗙
Reply from fdaa:cccc:0:1::205: Reply from fdaa:cccc:0:1::205: Reply from fdaa:cccc:0:1::205: Reply from fdaa:cccc:0:1::205: Reply from fdaa:cccc:0:1::205: Request timed out. Request timed out. Request timed out. Request timed out. Request timed out. Request timed out. Request timed out.	time=37ms time=40ms time=107ms time=49ms time=60ms	~
Request timed out.	time=oms	
Reply from fdaa:cccc:0:1::205: Reply from fdaa:cccc:0:1::205: Reply from fdaa:cccc:0:1::205: Reply from fdaa:cccc:0:1::205: Reply from fdaa:cccc:0:1::205: Request timed out.	time=63ms time=29ms time=52ms time=76ms time=2ms	

Some Screenshots;)

7/31/13 © ERNW GmbH | Carl-Bosch-Str. 4 | D-69115 Heidelberg | www.ernw.de

Address Scanning

- The second test consisted of sending packets to non-exisiting destinations in the DMZ to force the Juniper to perform Neighbor Discovery
- Performed with the scan6 tool with the following command:
 - ./scan6 -i eth0 -d fdaa:cccc:0:1::1-ffff:1ffff

Results

🚱 fdaa:bbbb:0:1::2 - PuTTY			- 🗆 <mark>- X</mark>			
fdaa:cccc:0:1::205	000c298ab6f3	R ethernet0/1	00h00m02s			
6 fdaa:bbbb:0:1::4 0	f0f755b32281	D ethernet0/0	00h00m02s			
fdaa:bbbb:0:1::201	3c970e182eb1	L ethernet0/0	01h57m22s			
" juniperERNW-> get ndp usage: 5/1024 miss: 0 always-on-dest: disabled states(S): N Undefined, X Deleted, I Incomplete, R Reachable, L Stale, D Delay, P Probe, F Probe forever S Static, A Active, I Inactive, * persistent						
IPv6 Address	Link-Layer Add	r S Interface	Age			
fe80::e22f:6dff:fe95:4825 0	e02f6d954825	L ethernet0/1	00h16m03s			
fe80::f2f7:55ff:feb3:2281 0	f0f755b32281	L ethernet0/0	01h59m55s			
fdaa:cccc:0:1::205	000c298ab6f3	R ethernet0/1	00h00m01s			
fdaa:bbbb:0:1::4 0	f0f755b32281	D ethernet0/0	00h00m01s			
fdaa:bbbb:0:1::201 0	3c970e182eb1	L ethernet0/0	01h57m21s			
juniperERNW->						

- We made some weird observation:

- Even though we sent out a lot of ICMPv6 Echo Requests to non existing IPv6 addresses.
- No incomplete entries could be found in the Juniper.
- We assume that the Juniper only insert an entry if ND is successful.

Management Protocols

SSH/HTTPS access works like a charm.

- Syslog not supported over IPv6.
- SNMP not supported over IPv6.

- NTP not supported over IPv6.

What We Have Observed in Customer Environments

- MEF

- See above at Problem Statement ;)

- Cisco CSM does not support IPv6 ACLs for Routers.
 - Still the case in July 2013? to be verified.

Student Work

Recent Student Work

- Stefan will take over here.

- He's a student with ERNW and had some time to play in the lab.
- He starts writing his bachelor thesis on "this stuff" on 08/01/13 ;-)

Theme

- First Test (practical work for university)

- Build up a laboratory
- Perform three evaluation Methods
 - Check against RIPE554
 - Security Tests (THC IPv6-Suite)
 - Performance Test

- Second Test (Bachelor Thesis)

- Taking a closer look of the extension header implementation
- Fuzzing \$Sec-Device with Dizzy
- Build own Scapy Scripts

Laboratory & First Tests

7/31/13 © ERNW GmbH | Carl-Bosch-Str. 4 | D-69115 Heidelberg | www.ernw.de

#72 www.ernw.de

Laboratory

VLAN10 IPv4: 192.168.1.0/24 IPv6: 2001:db8:0:1::/64

VLAN20 IPv4: 192.168.2.0/24 IPv6: 2001:db8:0:2::/64 VLAN30 IPv4: 192.168.3.0/24 IPv6: 2001:db8:0:3::/64

Tested devices

- Juniper SSG 5

- Cisco ASA 5505

RIPE 554

- Published in June 2012
- Overview about the specific requirements of IPv6 Environments
- -> ensure that the devices are able to support the IPv6 basic functionalities

Security tests

- THC-IPv6 Security Toolkit
- Marc Heuse
- Selected remote attacks:
 - firewall6
 - implementation6
 - thcping6
 - toobig6
 - ndpexhaust26
 - thcsyn6

Performance test

- Iperf – bandwidth measuring tool

- IPv4 and IPv6 on each \$sec-device
- Start iperf server in DMZ
 - Iperf -s (-V)
- Start iperf client at attacker vlan
 - Iperf -c 2001:db8:0:3::2008 -V

Test Results

7/31/13 © ERNW GmbH | Carl-Bosch-Str. 4 | D-69115 Heidelberg | www.ernw.de

#78 www.ernw.de

RIPE 554

performed test	Cisco ASA 5505	Juniper SSG 5				
check against RIPE 554						
IPv6 Basic specification	\odot	\odot				
IPv6 Addressing Architecture	\odot	\odot				
Default Address Selection	\odot	\odot				
ICMPv6	\odot	\odot				
SLAAC	\odot	\odot				
Router-Alert option	\odot					
Path MTU Discovery	\odot	\odot				
Neighbor Discovery	\odot	\odot				
Basic Transition Mechanisms	\odot	\odot				

7/31/13 © ERNW GmbH | Carl-Bosch-Str. 4 | D-69115 Heidelberg | www.ernw.de

Test results – Security Tests

performed test	Cisco ASA 5505	Juniper SSG 5				
check against RIPE 554						
./firewall6 eth0 2001:db8:0:3::2008 22	\bigcirc	e				
./firewall6 eth0 2001:db8:0:3::2008	(=				
./implementation6 -p eth0 2001:db8:0:3:2008	\odot					
./thcping6 eth0 2001:db8:0:1::1 2001:db8:0:3::2008	8	8				
./toobig6 eth0 2001:db8:0:1::1 2001:db8:0:3::2008 1280	\odot	\odot				
./toobig6 eth0 2001:db8:0:1::1 2001:db8:0:3::2008 48	8	8				
./toobig6 eth0 2001:db8:0:1::1 2001:db8:0:3::2008 100000	8	8				

7/31/13 © ERNW GmbH | Carl-Bosch-Str. 4 | D-69115 Heidelberg | www.ernw.de

Test results – Security Tests

performed test	Cisco ASA 5505	Juniper SSG 5				
check against RIPE 554						
./ndpexhaust26 -c -r eth0	$\boldsymbol{\otimes}$	\odot				
./ndpexhaust26 -c -r -p eth0 2001:db8:0:3::	8	8				
./thcsyn6 eth0 2001:db8:0:3::2008 80						
./thcsyn6 –A eth0 2001:db8:0:3::2008 80	=	e				
./thcsyn6 eth0 2001:db8:0:3::2008 x	(
./thcsyn6 -S eth0 2001:db8:0:3::2008 x	(e				

Performance test

- Cisco ASA

- IPv4 93.9 Mbit/sec
- IPv6 76.76 Mbit/sec
- Juniper SSG 5
 - IPv4 97.44 Mbit/sec
 - IPv6 88.6 Mbit/sec

Second Part (Bachelor Thesis)

7/31/13 © ERNW GmbH | Carl-Bosch-Str. 4 | D-69115 Heidelberg | www.ernw.de

#83 www.ernw.de

Future work

- Taking a closer look of the extension header implementation

- Fuzzing the IPv6 Header

- All Extension Headers in different combinations

- Crafting own Packets with scapy

- Different kinds of extension header chains

- More Vendors!

Fuzzing with Dizzy

- ERNW made fuzzing framework

- Python based
- Fast!
- Can send on L2 and upper Layers (TCP/UDP/SCTP)
- Very easy protocol definition syntax

- See also:

http://www.insinuator.net/2012/05/releasing-dizzyversion-0-6/

Fuzzing with Dizzy

```
#IPv6-Template
name = "ipv6 template"
objects = [
   field("eth dst", 48, "\xff\xff\xff\xff\xff\xff\xff", "none"),
   field("eth src", 48, "\x00\x14\xe2\xab\xe0\x69", "none"),
   #rand("eth src", 48),
   field("eth_type", 16, "\x08\x00", "none"),
   field("ip ver", 4, "\x06", none),
   field("tra cla", 8, "\x00", none),
   field("flo_lab", 20, "\x00\x00\x00", none),
   field("pay len", 16, "\x00\x00", full),
   field("nex hea", 8, "\x00", none),
   field("hop lim", 8, "\times00", none),
   field("udp src", 16, "\x00\x44", none),
   field("udp_dst", 16, "\x00\x43", none),
   field("udp len", 16, "\x00\x00", none),
   field("udp csum", 16, "\x00\x00", none),
functions = []
```


Scapy

- Python-based
- Build packets
- Decodes, but cant interpret packets
- Using in Scripts / Interactive
- ¬ Predefined header templates

Scapy example

#!/usr/bin/env python
from scapy.all import sr1,IPv6

```
packet= IPv6(src=srcip, dst=dstip)\
    /IPv6ExtHdrFragment(offset=0,m=1)\
    /IPv6ExtHdrDestOpt(nh=60)\
    /IPv6ExtHdrDestOpt(nh=60)\
    /IPv6ExtHdrDestOpt(nh=58)
packet2 = IPv6(src=srcip, dst=dstip)\
    /IPv6ExtHdrFragment(offset=5,m=0,nh=58)\
    /ICMPv6EchoRequest(cksum=csum, data=payload)
send (packet)
send (packet2)
```


Testing approaches, tools or any aspects?

sschwalb@ernw.de

7/31/13 © ERNW GmbH | Carl-Bosch-Str. 4 | D-69115 Heidelberg | www.ernw.de

#89 www.ernw.de

Appendix: IDP and SIEM Solutions

Overview of the Real-World Capabilities of Major Commercial Security Products.

IDP/SIEM

- Almost all vendors are "IPv6 proofed", but still are working on feature set like in IPv4
- The need of IPv6 has not yet arrived!
- Different kind of IPv6 support
 - Management Interfaces
 - Engine Support
 - Ruleset
 - Event Sources

Evaluated Equipment

 Intrusion Detection and Prevention Systems

- HP Tipping Point
- McAfee Network Security Platform
- Juniper IDP
- Cisco ASA SSC Module

Security Incident Event Monitoring

- HP ArcSight
- IBM QRadar
- Nitro
- Splunk

Event Sources

IPv6 Support on Cisco Network Devices

Netflow over IPv6

- Recording IPv6 records
- No transport over IPv6
 - Sending flow records over IPv4 exporter
- Limited kpoint only uses IPv4
- Flexible Netflow supports it since IOS 15.2
- IPv6 support for Syslog and SNMP depends on device
 - IOS 12.2 Cisco 3560
 - IOS 15.0 Cisco 1921/2951
 - Whats about Cisco 2950/3550?

Event Sources

Windows Management Instrumentation (WMI)

- WMI is supporting connections via IPv4 and IPv6
- Limitation within IP related classes, e.g. network adapter and routing information
 - E.g. Win32_ActiveRoute and Win32_NetworkAdapter

"Starting with Windows Vista, WMI also provides <u>limited support f</u>or IPv6 network capabilities." -> msdn.microsoft.com, 03-2013

Management Interfaces

Usually, one of the latest features, supported by the appliance.

- E.g. Cisco ASA currently is working on it

Trouble with management interfaces

- Kind of "new feature" in 2012/2013
- e.g. firefox is not able to handle
 [2001:db8::1] with HTTPS, in 2013
 - Ever tried [::1] in IE?

HP Tipping Point

Overview

- Supporting IPv6 since TOS v3.1

- Management interface available through IPv4 and IPv6
- Inspection of IPv6 Traffic
- IPv6 ruleset is enabled by default.
- In our tests, TP showed up an equal behavior between IPv4 and IPv6 in both, performance and intrusion detection.

				System L	.og LSM - Device (tpERNW) - Mozilla Firefox	
le <u>E</u> dit <u>V</u> iew Hi <u>s</u> to	ry <u>B</u> ookmarl	ks <u>T</u> ools <u>H</u> elp				
System Log LSM - I	Devi 🗙 🙍	Nessus	× 🕂			
https://192.16	8.1.40/report	/u1_report_log_sys_vi	ew.html?rmLog(QueryPerPage=	50&rmLogStartPos=1&rmLogStop=50&rmSysLogResetIndicator=true 🛛 🏠 🗸 🎯 🚺 😽 Google	Q
Email Server	1066	2013-03-09 19:43:31	ERR	SSH	no hostikev alg	
Syslog Servers	1067	2013-03-09 19:43:47	INFO	SSH	Protocol major versions differ for ::ffff:192.168.3.201: SSH-2.0-OpenSSH.3.501 vs. SSH-1.5-NmapNSE 1.0	
Named Networks	1068	2013-03-09 19:43:47	INFO	SSH	Protocol major versions differ for ::ffff:192.168.3.201: SSH-2.0-OpenSSH 3.5p1 vs. SSH-1.5-Nmap-SSH1-Hostkey	
License	1069	2013-03-09 19:43:47	ERR	SSH	no hostkey alg	
Tech Support Report	1070	2013-03-09 19:43:47	ERR	SSH	no hostkey alg	
Network	1071	2013-03-09 19:43:47	ERR	SSH	no hostkey alg	
Segments	1072	2013-03-09 19:43:47	ERR	SSH	no hostkey alg	
Network Ports	1073	2013-03-09 19:45:23	INFO	SSH	Protocol major versions differ for fdaa:cccc:0:1::201: SSH-2.0-OpenSSH_3.5p1 vs. SSH-1.5-NmapNSE_1.0	
Virtual Ports	1074	2013-03-09 19:45:23	INFO	SSH	Protocol major versions differ for fdaa:cccc:0:1::201: SSH-2.0-OpenSSH_3.5p1 vs. SSH-1.5-Nmap-SSH1-Hostkey	
Virtual Segments	1075	2013-03-09 19:45:23	ERR	SSH	no hostkey alg	
Network Tools	1076	2013-03-09 19:45:23	ERR	SSH	no hostkey alg	
Authentication	1077	2013-03-09 19:45:23	ERR	SSH	no hostkey alg	
ck To Top	1078	2013-03-09 19:45:23	ERR	SSH	no hostkey alg	
	1079	2013-03-09 19:45:25	INFO	SSH	Protocol major versions differ for fdaa:cccc:0:1::201: SSH-2.0-OpenSSH_3.5p1 vs. SSH-1.5-NmapNSE_1.0	
	1080	2013-03-09 19:45:25	INFO	SSH	Protocol major versions differ for fdaa:cccc:0:1::201: SSH-2.0-OpenSSH_3.5p1 vs. SSH-1.5-Nmap-SSH1-Hostkey	
	1081	2013-03-09 19:45:25	ERR	SSH	no hostkey alg	
	1082	2013-03-09 19:45:25	ERR	SSH	no hostkey alg	
	1083	2013-03-09 19:45:25	ERR	SSH	no hostkey alg	
	1084	2013-03-09 19:45:25	ERR	SSH	no hostkey alg	
	1085	2013-03-09 19:45:41	INFO	NET	Management port is no longer under attack: 15.0% bad packets (259 out of 1668) dropped in the last 60 seconds	
	1086	2013-03-09 19:46:01	INFO	SSH	Protocol major versions differ for fdaa:cccc:0:1::201: SSH-2.0-OpenSSH_3.5p1 vs. SSH-9.9-OpenSSH_5.0	
	1087	2013-03-09 19:46:02	INFO	SSH	Protocol major versions differ for fdaa:cccc:0:1::201: SSH-2.0-OpenSSH_3.5p1 vs. SSH-1.33-OpenSSH_5.0	
	1088	2013-03-09 19:46:03	INFO	SSH	Protocol major versions differ for fdaa:cccc:0:1::201: SSH-2.0-OpenSSH_3.5p1 vs. SSH-1.5-OpenSSH_5.0	
	50 • F	Records per page			<< <	1-50 of 93 entries > >>

System Summary | System Log | Security Profiles | Performance | Filter Matches Report | Help | Site Map

HP Tipping Point

Nessus IPv6 Scan

HP Tipping Point

Cisco ASA and SSC-5

Overview

- IPv6 requirements

- At least ASA Software Release 8.2
- IPS Sensor Software Release 6.2

- But no support for management interface via IPv6.
- Limited IPv6 rule and feature set.

Cisco ASA and SSC-5

Limited IPv6 Features

Event Action Rules "rules0" for virtual sensor "vs0"							
Event Action Filters	IPv4 Target Value Rating	IPv6 Target Valu	e Rating OS Identifications	Event Variables Risk Category	/ General		
The OS mappings are used for Attack Relevance Ratings (ARR) in the calculation of Risk Ratings for an alert.							
✓ Enable passive OS fingerprinting analysis							
Restrict OS mapping and ARR to these IP addresses (for example, 10.10.5.5,10.10.2.1-10.10.2.30):							
0.0.0.0-255.255.255.255, fdaa:cccc:0:1::205							
Configured OS Maps		Error					
Add C Edit Del	lete 🗲 🗲	[AF fda	RR Range] Validation Error: Th a:cccc:0:1::205) is illegal.	e first octet in the IP address(-		
			OK				

7/31/13 © ERNW GmbH | Carl-Bosch-Str. 4 | D-69115 Heidelberg | www.ernw.de

Cisco ASA and SSC-5

IPv6 Support Documentation?

Cisco ASA IPS

Q. Can the Cisco ASA 5500 Series IPS solution support hybrid IPv6 and IPv4 deployments?

A. Yes. The Cisco ASA 5500 Series IPS solution provides protection for pure IPv6 deployments, pure IPv4 deployments, and hybrid IPv6 and IPv4 deployments with a single appliance, for maximum deployment flexibility and investment protection.

Q. Which versions of Cisco ASA Software are required to support IPv6 for IPS?

A. In order to support IPv6 for IPS, Cisco ASA devices must be running a minimum of Cisco ASA Software Release 8.2 and a minimum of Cisco IPS Sensor Software Release 6.2 and E3 engine on the IPS module.

Q. Are the IPv6 for IPS capabilities on Cisco IPS Sensor Software Release 6.2 National Security Agency (NSA) approved?

A. Yes. The IPv6 for IPS capabilities on Cisco IPS Sensor Software Release 6.2 are NSA approved.

Q. What management applications can be used to configure the Cisco ASA AIP SSMs to protect my IPv6 network?

A. The Cisco Adaptive Security Device Manager (ASDM), Cisco IPS Device Manager (IDM), or Cisco IPS Manager Express (IME) can be used to configure the IPv6 and IPv4 IPS capabilities on the Cisco ASA AIP SSMs.

McAfee NSP

NSP Versions: 6.0, 6.1, and 7.0 "Full IPv6 support"

2. Features that do not support IPv6

IPv6 is not supported for the following features in Network Security Platform:

- Access Control Lists/ Firewall policies [classic (ACLs) and advanced policies]: works when not using IPv6 addresses
- IP spoofing
- Virtualization (VIDS) based on CIDR interfaces
- TACACS+
- DoS/DDoS detection
- Threat Analyzer launch using IPv6 addresses
- Network Access Control [NAC]
- Network Threat Behavior Analysis [NTBA]
- Integration with:
 - McAfee ePolicy Orchestrator [ePO]
 - McAfee Host Intrusion Prevention
 - McAfee Vulnerability Manager
 - McAfee Global Threat Intelligence [GTI] for IP Reputation

Reference: McAfee® Application Note, Network Security Platform: IPv6 Support, 04-Jun-2012

PROBLEM OR GOAL:

By default, IPv6 traffic is dropped on IDP stand-alone platforms.

CAUSE:

The 4.x, 5.0rx, and 5.1rx IDP software version handle IPv6 traffic as non-IP protocol and by default, drop it. Layer 2 bypass must be enabled to forward IPv6 traffic, as well as other non-IP protocols.

To enable this option:

- Logon to the IDP ACM via a web browser (https://IDP_IP_ADDRESS).
- 2. Click ACM; from the ACM menu, select Configure Virtual Routers.
- 3. In the web page, select the Enable layer2 bypass check box.
- Then, adhere to the rest of the wizard instructions and confirm the configuration at the end. This will restart the IDP processes.

To verify if the ACM setting is in effect:

- 1. Edit the /usr/idp/device/cfg/idp.cfg file.
- 2. Verify the idp.layer2_bypass line; the value must be set to 1 (enabled).
- 3. IDP processes must be restarted to apply the change.

Currently, IPv6 traffic inspection is not available for stand-alone IDP platforms.

[KB14828]

SIEM

Security Information and Event Management

- Data aggregation
- Log and event correlation
- Monitoring, alerting and dashboard functionalities
- Real-time analysis of security alerts generated by network hardware and applications.
- Therefor as central component must deal with IPv6, or?

HP ArcSight

- "IPv6 is fully supported"
- But more means a kind of limited IPv6 support
- ESM is supporting IPv6, enabled by default
 - Known problems in viewing address space (using text fields)
 - No standard rules based on IPv6

IBM QRadar

Engine is IPv6 ready, but yet there exist not much IPv6 rules.

McAfee ESM & Splunk

¬ McAfee ESM

- "Supporting IPv6" with 8.4.x
- Event delivery supported since 9.0

- Splunk

- Full IPv6 support on base system, including indexing services.
- Event management relates on used app

There is no need of IPv6 rules yet,
 therefore vendors have no focus on creating them.

- Customers must apply pressure!
- Almost all appliances are IPv6 ready, within limitations.
 - E.g. within additional feature sets
- Differences in rulesets are necessary, e.g. related to IPv6 specific attacks!
Blog: **NSINUATOR**.NET Conference: **TROOPERS**.de

Stay in touch

Visit our blog and join the discussion:

 Insinuator.net

¬ Join us at TROOPERS.de conference!

- Details: See next slide.

- Ping us at Twitter: <u>@W</u>

<u>@WEareTROOPERS</u> <u>@Insinuator</u>

Drop us a mail.

There are few things to know about TROOPERS:

DATE: March, 17-21. 2014 PLACE: Heidelberg, Germany MISSION: Make the world a safer place.

REGISTRATION OPEN: www.troopers.de

7/31/13 © ERNW GmbH | Carl-Bosch-Str. 4 | D-69115 Heidelberg | www.ernw.de

#110 www.ernw.de

Blog: **NINUATOR**.NET Conference: **TROOPERS**.de

The Archive

Feel the spirit – TROOPERS13 Teaser: <u>https://www.youtube.com/watch?v=lfBo48r-Qho</u>

¬ TROOPERS13 Talks:

- Videos:

- <u>http://www.youtube.com/playlist?</u> list=PL1eoQr97VfJl1LdMzyQPz71uR6bwiUGog
- Slides: <u>https://www.troopers.de/archives/index.html</u>
- We hope to see you in 2014!